Very Fast Magnetic Data Storage

For almost seventy years now, magnetic tapes and hard disks have been used for data storage in computers. In spite of many new technologies that have been developed in the meantime, the controlled magnetization of a data storage medium remains the first choice for archiving information because of its longevity and low price. As a means of realizing random access memories (RAMs), however, which are used as the main memory for processing data in computers, magnetic storage technologies were long considered inadequate. That is mainly due to its low writing speed and relatively high energy consumption.

In 1956, IBM introduced the first magnetic hard disc, the RAMAC. ETH researchers have now tested a novel magnetic writing technology that could soon be used in the main memories of modern computers

Pietro Gambardella, Professor at the Department of Materials of the Eidgenössische Technische Hochschule Zürich (ETHZ, Switzerland), and his colleagues, together with colleagues at the Physics Department and at the Paul Scherrer Institute (PSI), have now shown that using a novel technique, magnetic storage can still be achieved very fast and without wasting energy.

In 2011, Gambardella and his colleagues already demonstrated a technique that could do just that: An electric current passing through a specially coated semiconductor film inverted the magnetization in a tiny metal dot. This is made possible by a physical effect called spin-orbit-torque. In this effect, a current flowing in a conductor leads to an accumulation of electrons with opposite magnetic moment (spins) at the edges of the conductor. The electron spins, in turn, create a magnetic field that causes the atoms in a nearby magnetic material to change the orientation of their magnetic moments. In a new study the scientists have now investigated how this process works in detail and how fast it is.

The results were recently published in the scientific journal Nature Nanotechnology.


Light Makes OscillatorTo Oscillate Indefinitely

Researchers have designed a device that uses light to manipulate its mechanical properties. The device, which was fabricated using a plasmomechanical metamaterial, operates through a unique mechanism that couples its optical and mechanical resonances, enabling it to oscillate indefinitely using energy absorbed from light.

metamaterialThis work demonstrates a metamaterial-based approach to develop an optically-driven mechanical oscillator. The device can potentially be used as a new frequency reference to accurately keep time in GPS, computers, wristwatches and other devices, researchers said. Other potential applications that could be derived from this metamaterial-based platform include high precision sensors and quantum transducers..

Researchers engineered the metamaterial-based device by integrating tiny light absorbing nanoantennas onto nanomechanical oscillators. The study was led by Ertugrul Cubukcu, a professor of nanoengineering and electrical engineering at the University of California San Diego. The work, which Cubukcu started as a faculty member at the University of Pennsylvania and is continuing at the Jacobs School of Engineering at UC San Diego, demonstrates how efficient light-matter interactions can be utilized for applications in novel nanoscale devices.

Metamaterials are artificial materials that are engineered to exhibit exotic properties not found in nature. For example, metamaterials can be designed to manipulate light, sound and heat waves in ways that can’t typically be done with conventional materials.

Metamaterials are generally considered “lossy” because their metal components absorb light very efficiently. “The lossy trait of metamaterials is considered a nuisance in photonics applications and telecommunications systems, where you have to transmit a lot of power. We’re presenting a unique metamaterials approach by taking advantage of this lossy feature,” Cubukcu said. The researchers also point out that because the plasmomechanical metamaterial can efficiently absorb light, it can function under a broad optical resonance. That means this metamaterial can potentially respond to a light source like an LED and won’t need a strong laser to provide the energy.

Using plasmonic metamaterials, we were able to design and fabricate a device that can utilize light to amplify or dampen microscopic mechanical motion more powerfully than other devices that demonstrate these effects. Even a non-laser light source could still work on this device,” said Hai Zhu, a former graduate student in Cubukcu’s lab and first author of the study.

Optical metamaterials enable the chip-level integration of functionalities such as light-focusing, spectral selectivity and polarization control that are usually performed by conventional optical components such as lenses, optical filters and polarizers. Our particular metamaterial-based approach can extend these effects across the electromagnetic spectrum,” adds Fei Yi, a postdoctoral researcher who worked in Cubukcu’s lab.

The research was published in the journal Nature Photonics.


NanoComputers That Imitate Human Brain

Making a nanocomputer that learns and remembers like a human brain is a daunting challenge. The complex organ has 86 billion neurons and trillions of connections — or synapses — that can grow stronger or weaker over time. But now scientists from the Tsinghua University (China) report in ACS’ journal Nano Letters the development of a first-of-its-kind synthetic synapse that mimics the plasticity of the real thing, bringing us one step closer to human-like artificial intelligence.


While the brain still holds many secrets, one thing we do know is that the flexibility, or plasticity, of neuronal synapses is a critical feature. In the synapse, many factors, including how many signaling molecules get released and the timing of release, can change. This mutability allows neurons to encode memories, learn and heal themselves. In recent years, researchers have been building artificial neurons and synapses with some success but without the flexibility needed for learning. Tian-Ling Ren and colleagues set out to address that challenge.

The researchers created an artificial synapse out of aluminum oxide and twisted bilayer graphene. By applying different electric voltages to the system, they found they could control the reaction intensity of the receiving “neuron.” The team says their novel dynamic system could aid in the development of biology-inspired electronics capable of learning and self-healing.


Control Google Glass Directly By Your Mind

The british company This Place wants to change the future of usability for everyone. As a digital design agency, they are acutely aware of the importance of accessibility and potential for digital technologies to enhance the lives of millions of people who live with disabilities. In order to make a difference, the company focus on cutting out the need for a high level of dexterity to operate computers, and instead focus on utilising the power of the mind. Basically the device called MindRDR read brain waves in your mind.


Do you want to take a pic and to send it to your friends through Twitter? MindRDR will read the waves of your mind and operates the internet commands for you using your Google Glass.


Next step: control a computer remotely just with your mind, or just as you use an imaginary keyboard to control your computer

The mindRDR and the NeuroSky MindWave system could be great news for all humans stuck paralyzed in wheel chairs.


2016: The End Of Cables, A Completely Wireless PC

Intel‘s Skylake, which is the company’s post-Broadwell next-generation platform, will allow the PC maker to eliminate the need for any cables by 2016. Kirk Skaugen, Intel senior Vice-President , has demonstrated at Taipei’s Computex show wireless capabilities for docking, charging and display, which are the last functions for the PC that still require cables. A completely wireless PC has long been desired, but the idea has faced much difficulty because of the need for connecting cables by PC peripherals, along with the system’s need for power.

Intel is looking to use WiGig, a new protocol that can deliver speeds of up to 7 Gbps, to provide short-range docking for display and connectivity The WiGig instantly connects screens and other peripherals when a tablet or laptop appears within the device’s range, and also instantly disconnects as the tablet or laptop is moved away. Users can project what’s on their computer screen to other computer screens wirelessly.

For power, on the other hand, Intel is looking at using Rezence, which Skaugen demonstrated. Rezence is a charging technology that uses magnetic resonance (The phenomenon of absorption of certain frequencies of radio and microwave radiation by atoms placed in a magnetic field. The pattern of absorption reveals molecular structure). The technology is promoted by Intel-backed group Alliance 4 Wireless Power. It can be placed underneath the surface of a table, with the system’s magnetic resonance able to charge devices through even 2 inches of wood. Also, unlike inductive chargers that can only charge one device at a time, magnetic resonance chargers can charge several devices all at once.

The system was also demonstrated by Skaugen at Computex, using a table installed with Rezence to charge a mobile phone, a headset, a laptop and a tablet simultaneously. Skaugen also announced new member companies of the A4WP, which includes Lenovo, Fujitsu, Dell, Panasonic and Logitech, to work with already partners Toshiba and Asus.

Let’s remind that the company Apple has dabbled into magnetic resonance charging technology in the past, filing a patent for the technology.


Nano Machine Shop

A new “nano machine shop” that shapes nanowires and ultrathin films could represent a future manufacturing method for tiny structures with potentially revolutionary properties. The structures might be tuned for applications ranging from high-speed electronics to solar cells and also may have greater strength and unusual traits such as ultrahigh magnetism and “plasmonic resonance,” which could lead to improved optics, computers and electronics. The researchers used their technique to stamp nano– and microgears; form tiny circular shapes out of a material called graphene, an ultrathin sheet of carbon that holds promise for advanced technologies; and change the shape of silver nanowires, said Gary Cheng, an associate professor of industrial engineering at Purdue University.

We do this shaping at room temperature and atmospheric pressure, like a nano-machine shop,” said Cheng, who is working with doctoral students Ji Li, Yiliang Liao, Ting-Fung Chung and Sergey Suslov and physics professor Yong P. Chen.

New solar cells

Researchers at CRANN, the Science Foundation Ireland funded nanoscience institute based in Trinity College Dublin (TCD), have discovered a new material that could transform the quality, lifespan and efficiency of flat screen computers, televisions and  solar cells.  The research team was led by Prof Igor Shvets, a CRANN, a  Principal Investigator who comments: "this is an exciting development with a range of applications and we are hopeful this initial research will attract commercial interest in order to explore its industrial use.  The new material could lead to innovations such as window-integrated flat screens and to increase the efficiency of certain solar cells, thus significantly impacting on the take-up of solar cells, which can help us to reduce carbon emissions.

Devices that the new material could be used with such as solar cells, flat screen TVs, computer monitors, LEDs all utilise materials that can conduct electricity and at the same time are see-through.  These devices currently use transparent conducting oxides, which are a good compromise between electrical conductivity and optical transparency. They all have one fundamental limitation: they all conduct electricity through the movement of electrons