Gilded fuel cells boost electric car efficiency

To make modern-day fuel cells less expensive and more powerful, a team led by Johns Hopkins chemical engineers has drawn inspiration from the ancient Egyptian tradition of gilding. Egyptian artists at the time of King Tutankhamun often covered cheaper metals (copper, for instance) with a thin layer of a gleaming precious metal such as gold to create extravagant masks and jewelry. In a modern-day twist, the Johns Hopkins-led researchers have applied a tiny coating of costly platinum just one nanometer thick—100,000 times thinner than a human hair—to a core of much cheaper cobalt. This microscopic marriage could become a crucial catalyst in new fuel cells that generate electric current to power cars and other machines.

The new fuel cell design would save money because it would require far less platinum, a very rare and expensive metal that is commonly used as a catalyst in present-day fuel-cell electric cars. The researchers, who published their work earlier this year in Nano Letters, say that by making electric cars more affordable, this innovation could curb the emission of carbon dioxide and other pollutants from gasoline– or diesel-powered vehicles.

This technique could accelerate our launch out of the fossil fuel era,” said Chao Wang, a Johns Hopkins assistant professor in the Department of Chemical and Biomolecular Engineering and senior author of the study. “It will not only reduce the cost of fuel cells. It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

In their journal article, the authors tipped their hats to the ancient Egyptian artisans who used a similar plating technique to give copper masks and other metallic works of art a lustrous final coat of silver or gold.The idea,” Wang said, “is to put a little bit of the precious treasure on top of the cheap stuff.”

He pointed out that platinum, frequently used in jewelry, also is a critical material in modern industry. It catalyzes essential reactions in activities including petroleum processing, petrochemical synthesis, and emission control in combustion vehicles, and is used in fuel cells. But, he said, platinum’s high cost and limited availability have made its use in clean energy technologies largely impractical—until now.

Source: https://hub.jhu.edu/

Nano-enhanced Textiles Clean Themselves Of Stains

Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special —which can degrade organic matter when exposed to lightdirectly onto . The work paves the way towards nano-enhanced textiles that can spontaneously clean themselves of stains and grime simply by being put under a light bulb or worn out in the sun. Dr Rajesh Ramanathan said the process developed  by the team had a variety of applications for catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and could be easily scaled up to industrial levels.

no more washing textileClose-up of the nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times

The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,”said Dr Ramanathan. “There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textile, he adds.”

The researchers from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at RMIT worked with copper and silver-based nanostructures, which are known for their ability to absorb visible light.

Source: http://phys.org/

Nanoparticles Activated By Solar Energy Boil Water

Young researchers created a superconducting heat ink that functions as a solar heater. It heats water up to 68 degrees Celsius and is 40 percent cheaper than commercial inks.

hot shower 2

A pipe exposed to the sun reaches a temperature of 40 C°, if we add the superconducting ink the temperature increases 70 percent and reaches 68 C°,” says Sandra Casillas Bolaños, master at the Technological Institute of the Lagoon (ITL), in north of Mexico, and head of the project.

She explains that the ink acts as a boiler that contains nanoparticles activated by solar energy and increasing the temperature.

 

The ink is made of two layers, the first is an internal magnetic titanium nanoparticle, which is responsible for trapping the heat and the second is external and consists of a coating of tungsten (filament in light bulbs) which researchers transform into a nano salt and adhere with polyvinyl alcohol, to finish with a layer of copper.

Casillas Bolaños states that by a treatment called burnishing copper blackens in order that trap and retain heat inside the particles. “Thus the center is heated more intensely: first the titanium, then tungsten and finally the copper“.

The project has been developed for two years and the product is classified as an ink because it uses a series of solvents making it fast drying and with an odor similar to hair dye. The ink is applied on the surface of a conventional pipe that carries water and to potentiate the heat, students working on the project with professor Casillas Bolaños in the nonmetallic materials field, put two layers of PET bottles over the tubes in order to create a greenhouse effect and raise the temperature faster, as well as protect the ink from outdoor wear.

The technology has been implemented in some houses, where, by flowing for five meters water at 68 C° is obtained instantly, and even in cloudy weather the ink nicely captures the heat. Sandra Casillas adds that the ink was implemented in a major sports complex of the city to heat the pool, where two million cubic meters of water are heated from 26 to 37 C°. To achieve this, the researcher and her team placed tubes covered with ink on the edge of the indoor pool and a pump pulls the liquid from seven o’clock until the sun sets. As it flows, the water is heated and reaches the ideal temperature.

The ink is in the process of patenting and is intended to be market at 600 pesos a liter (about 40 dollars); however, for house piping only 150 pesos (10 dollars) are invested because very little is needed, says Casillas Bolaños.

Source: http://www.alphagalileo.org/

Computer: Nano Optical Cables To Replace Copper

Electrical engineers design nano-optical cables that could replace copper wiring on computer chips. The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips. This could result in radical increases in computing speeds and reduced energy use by electronic devices. A new step towards the nanocomputer era.
photonics

We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnect—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professosr leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.
At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

Source: http://uofa.ualberta.ca/

Copper, The Cheap Material For Solar Energy

Copper adorns the Statue of Liberty, makes sturdy, affordable wiring, and helps our bodies absorb iron. Now, researchers at Duke University would like to use copper to transform sunlight and water into a chemical fuel. Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. One of the ways chemists have tried to capture the power of the sun is through water splitting, in which the atoms of H2O are broken apart so the hydrogen may be collected and used as fuel. Plants do this naturally through photosynthesis, and for half a century, scientists have tried to recreate that process by tinkering with chemical catalysts jumpstarted by sunlight. Indium tin oxide (ITO) is one material they’ve commonly tried to use. Researchers prefer it for its transparency — which allows sunlight to pass through and trigger the water-splitting reactions — and its ability to conduct electricity. But ITO is far from an ideal material.
Copper Nanowire

Indium is not very abundant,” said Ben Wiley, assistant professor of chemistry at Duke University. “It is similar in abundance to silver in the earth’s crust.” As a result, solar fuel cells using ITO will likely remain expensive and uncompetitive with conventional energy sources like coal and natural gas“, he said. Copper is 1000 times more plentiful and 100 times less expensive than indium. Copper nanowire catalysts also cost less to produce than their ITO counterparts because they can be “printed” on pieces of glass or plastic in a liquid ink form, using a machine that functions much like a printing press. ITO production, by contrast, requires large, sequential chambers of pumps and vacuums that deposit a thin layer of indium atoms at a far slower rate.

Source: http://today.duke.edu/