3-D Printed Graphene Foam

Nanotechnologists from Rice University and China’s Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene. The research could yield industrially useful quantities of bulk graphene and is described online in a new study in the American Chemical Society journal ACS Nano.

Laser sintering was used to 3-D print objects made of graphene foam, a 3-D version of atomically thin graphene. At left is a photo of a fingertip-sized cube of graphene foam; at right is a close-up of the material as seen with a scanning electron microscope

This study is a first of its kind,” said Rice chemist James Tour, co-corresponding author of the paper. “We have shown how to make 3-D graphene foams from nongraphene starting materials, and the method lends itself to being scaled to graphene foams for additive manufacturing applications with pore-size control.”

Graphene, one of the most intensely studied nanomaterials of the decade, is a two-dimensional sheet of pure carbon that is both ultrastrong and conductive. Scientists hope to use graphene for everything from nanoelectronics and aircraft de-icers to batteries and bone implants. But most industrial applications would require bulk quantities of graphene in a three-dimensional form, and scientists have struggled to find simple ways of creating bulk 3-D graphene.

For example, researchers in Tour’s lab began using lasers, powdered sugar and nickel to make 3-D graphene foam in late 2016. Earlier this year they showed that they could reinforce the foam with carbon nanotubes, which produced a material they dubbed “rebar graphene” that could retain its shape while supporting 3,000 times its own weight. But making rebar graphene was no simple task. It required a pre-fabricated 3-D mold, a 1,000-degree Celsius chemical vapor deposition (CVD) process and nearly three hours of heating and cooling.  “This simple and efficient method does away with the need for both cold-press molds and high-temperature CVD treatment,” said co-lead author Junwei Sha, a former student in Tour’s lab who is now a postdoctoral researcher at Tianjin. “We should also be able to use this process to produce specific types of graphene foam like 3-D printed rebar graphene as well as both nitrogen- and sulfur-doped graphene foam by changing the precursor powders.” Sha and colleagues conducted an exhaustive study to find the optimal amount of time and laser power to maximize graphene production. The foam created by the process is a low-density, 3-D form of graphene with large pores that account for more than 99 percent of its volume.

The 3-D graphene foams prepared by our method show promise for applications that require rapid prototyping and manufacturing of 3-D carbon materials, including energy storage, damping and sound absorption,” said co-lead author Yilun Li, a graduate student at Rice.

Source: http://news.rice.edu/

Nanoparticles From Air Pollution Travel Into Blood To Cause Heart Disease

Inhaled nanoparticles – like those released from vehicle exhausts – can work their way through the lungs and into the bloodstream, potentially raising the risk of heart attack and stroke, according to new research part-funded by the British Heart Foundation. The findings, published today in the journal ACS Nano, build on previous studies that have found tiny particles in air pollution are associated with an increased risk of cardiovascular disease, although the cause remains unproven. However, this research shows for the first time that inhaled nanoparticles can gain access to the blood in healthy individuals and people at risk of stroke. Most worryingly, these nanoparticles tend to build-up in diseased blood vessels where they could worsen coronary heart disease – the cause of a heart attack.

It is not currently possible to measure environmental nanoparticles in the blood. So, researchers from the University of Edinburgh, and the National Institute for Public Health and the Environment in the Netherlands, used a variety of specialist techniques to track the fate of harmless gold nanoparticles breathed in by volunteers. They were able to show that these nanoparticles can migrate from the lungs and into the bloodstream within 24 hours after exposure and were still detectable in the blood three months later. By looking at surgically removed plaques from people at high risk of stroke they were also able to find that the nanoparticles accumulated in the fatty plaques that grow inside blood vessels and cause heart attacks and strokesCardiovascular disease (CVD) – the main forms of which are coronary heart disease and stroke – accounts for 80% of all premature deaths from air pollution.


It is striking that particles in the air we breathe can get into our blood where they can be carried to different organs of the body. Only a very small proportion of inhaled particles will do this, however, if reactive particles like those in air pollution then reach susceptible areas of the body then even this small number of particles might have serious consequences,”  said Dr Mark Miller, Senior Research Fellow at the University of Edinburgh who led the study.

Source: http://www.cvs.ed.ac.uk/

Clean Renewable Source Of Hydrogen Fuel For Electric Car

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the form of hydrogen and oxygen.

anode RiceA photo shows an array of titanium dioxide nanorods with an even coating of an iron, manganese and phosphorus catalyst. The combination developed by scientists at Rice University and the University of Houston is a highly efficient photoanode for artificial photosynthesis. Click on the image for a larger version

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight. An oxygen-evolution  catalyst splits water into hydrogen and oxygen. Finding a clean renewable source of hydrogen fuel is the focus of extensive research, but the technology has not yet been commercialized.

The Rice team came up with a way to combine three of the most abundant metalsiron, manganese and phosphorus — into a precursor that can be deposited directly onto any substrate without damaging it. To demonstrate the material, the lab placed the precursor into its custom chemical vapor deposition (CVD) furnace and used it to coat an array of light-absorbing, semiconducting titanium dioxide nanorods. The combined material, called a photoanode, showed excellent stability while reaching a current density of 10 milliamps per square centimeter, the researchers reported.

The results appear in two new studies. The first, on the creation of the films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.

Source: http://news.rice.edu/