Skin Patches Melt Fat

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders, such as obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina. Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat—a process named browning—which can happen naturally when the body is exposed to cold temperatures—as a treatment for obesity and diabetes.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology & cell biology at Columbia. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter—too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

The findings, from experiments in mice, were published online today in ACS Nano.

Source: http://newsroom.cumc.columbia.edu/

Nano-Implant Could Restore Sight

A team of engineers at the University of California San Diego (UC San Diego)  and La Jolla-based startup Nanovision Biosciences Inc. have developed the nanotechnology and wireless electronics for a new type of retinal prosthesis that brings research a step closer to restoring the ability of neurons in the retina to respond to light. The researchers demonstrated this response to light in a rat retina interfacing with a prototype of the device in vitro. The technology could help tens of millions of people worldwide suffering from neurodegenerative diseases that affect eyesight, including macular degeneration, retinitis pigmentosa and loss of vision due to diabetes.

Despite tremendous advances in the development of retinal prostheses over the past two decades, the performance of devices currently on the market to help the blind regain functional vision is still severely limited—well under the acuity threshold of 20/200 that defines legal blindness.

cortical neuronsPrimary cortical neurons cultured on the surface of an array of optoelectronic nanowires. Note the extensive neurite outgrowth and network formation

We want to create a new class of devices with drastically improved capabilities to help people with impaired vision,” said Gabriel A. Silva, one of the senior authors of the work and professor in bioengineering and ophthalmology at UC San Diego. Silva also is one of the original founders of Nanovision.

Power is delivered wirelessly, from outside the body to the implant, through an inductive powering telemetry system developed by a team led by Cauwenberghs.

The device is highly energy efficient because it minimizes energy losses in wireless power and data transmission and in the stimulation process, recycling electrostatic energy circulating within the inductive resonant tank, and between capacitance on the electrodes and the resonant tank. Up to 90 percent of the energy transmitted is actually delivered and used for stimulation, which means less RF wireless power emitting radiation in the transmission, and less heating of the surrounding tissue from dissipated power. For proof-of-concept, the researchers inserted the wirelessly powered nanowire array beneath a transgenic rat retina with rhodopsin P23H knock-in retinal degeneration.

The findings are published in a recent issue of the Journal of Neural Engineering.

Source: http://ucsdnews.ucsd.edu/

 

Hand-Held Breath Monitor To Detect Flu

Perena Gouma, a professor in the Materials Science and Engineering Department at The University of Texas at Arlington, has devised a hand-held breath monitor that can detect the flu virus. The single-exhale sensing device is similar to the breathalyzers used by police officers when they suspect a driver of being under the influence of alcohol. A patient simply exhales into the device, which uses semiconductor sensors like those in a household carbon monoxide detector.  The difference is that these sensors are specific to the gas detected, yet still inexpensive, and can isolate biomarkers associated with the flu virus and indicate whether or not the patient has the flu. The device could eventually be available in drugstores so that people can be diagnosed earlier and take advantage of medicine used to treat the flu in its earliest stages. This device may help prevent flu epidemics from spreading, protecting both individuals as well as the public health.

Gouma and her team relied on existing medical literature to determine the quantities of known biomarkers present in a person’s breath when afflicted with a particular disease, then applied that knowledge to find a combination of sensors for those biomarkers that is accurate for detecting the flu. For instance, people who suffer from asthma have increased nitric oxide concentration in their breath, and acetone is a known biomarker for diabetes and metabolic processes. When combined with a nitric oxide and an ammonia sensor, Gouma found that the breath monitor may detect the flu virus, possibly as well as tests done in a doctor’s office. Gouma’s sensors are at the heart of her breath analyzer device.

breath monitor prototype

I think that technology like this is going to revolutionize personalized diagnostics. This will allow people to be proactive and catch illnesses early, and the technology can easily be used to detect other diseases, such as Ebola virus disease, simply by changing the sensors,” said Gouma, who also is the lead scientist in the Institute for Predictive Performance Measurement at the UTA Research Institute.
Before we applied nanotechnology to create this device, the only way to detect biomarkers in a person’s breath was through very expensive, highly-technical equipment in a lab, operated by skilled personnel. Now, this technology could be used by ordinary people to quickly and accurately diagnose illness.”

The findings are described  in the journal Sensors Source.

https://www.uta.edu/

Neuron Triggers Insulin

Research led by a Johns Hopkins University biologist demonstrates the workings of a biochemical pathway that helps control glucose in the bloodstream, a development that could potentially lead to treatments for diabetes. In a paper published in the current issue of Developmental Cell, Jessica Houtz, a graduate student working with Rejji Kuruvilla in the Department of Biology at Johns Hopkins, shows that a protein that regulates the development of nerve cells also plays a role in prompting cells in the pancreas to release insulin, a hormone that helps to maintain a normal level of blood sugar.

jessica_houtzCLICK ON THE IMAGE TO ENJOY THE VIDEO
Kuruvilla worked on the project with Johns Hopkins colleagues, Houtz who is the lead author, and Philip Borden and Alexis Ceasrine, all doctoral students in the biology department. Also taking part was Liliana Minichiello of the Department of Pharmacology at the University of Oxford.

The research is potentially relevant to type-2 diabetes, the most common form of the disease, affecting nearly one in ten Americans. With this form of the condition, which can appear at any time of life, the body makes insulin, but is either not releasing enough of it or not using the regulatory chemical efficiently to control blood sugar. In type-1 diabetes, which appears in childhood, an immune response gone awry destroys the body’s ability to produce insulin altogether.

The research on insulin represents a detour for Kuruvilla, whose work has focused on development of the peripheral nervous system. She has studied a group of proteins called neurotrophins, and in particular nerve growth factor [NGF]. These proteins nurture the growth of neurons, the cells of the nervous system.

neurons-fly-through-3d-model

It has been known for some time that neurons and the pancreatic beta cells, or β-cells, that reside in clusters called islets of Langerhans and produce insulin, have many similarities in molecular makeup and signaling receptors. Receptors are proteins on cell surfaces that respond to particular chemicals and have critical roles in biochemical pathways. Both neurons and pancreatic β-cells have the receptors for neurotrophins.

This project was sparked by seeing NGF receptors present in beta-cells,” said Kuruvilla. The question was, she said: “what are these receptors doing outside the nervous system?”

Turns out that NGF performs a function in the mature pancreas that has nothing to do with supporting neurons. Specifically, the research team traced a chain of biochemical signals showing that elevated blood glucose causes NGF to be released from blood vessels in the pancreas, and that the NGF signal then prompts pancreatic β-cells to relax their rigid cytoskeletal structure, releasing insulin granules into the blood stream. Although β-cells also make NGF, Kuruvilla and her team found that it was the NGF released from the blood vessels that is needed for insulin secretion.

Using genetic manipulation in mice and drugs to block NGF signaling in β-cells, they were able to disrupt distinct elements of this signaling sequence, to show that this classical neuronal pathway is necessary to enhance insulin secretion and glucose tolerance in mice. Importantly, Kuruvilla and colleagues found that NGF’s ability to enhance insulin secretion in response to high glucose also occurs in human β-cells.

It is not yet clear how this system is affected in people with diabetes. “We are very interested in knowing whether aspects of this pathway are disrupted in pre-diabetic individuals,” said Kuruvilla. It would be of interest to determine if NGF or small molecules that bind and activate NGF receptors in the pancreas could be of potential use in the treatment of type-2 diabetes.

Source: http://releases.jhu.edu/

Diabetes drug eliminates insulin injections

More than 400 million people around the world suffer from diabetes. Until recently it was thought that Type 2 diabetes was an adult onset condition. However, the WHO says it’s now occurring increasingly in children too. So news that Israeli drugmaker Oramed Pharmaceuticals Inc has developed an experimental oral insulin that safely reduces night-time blood glucose levels in type 2 patients is promising. Oramed‘s chief executive Nadav Kidron says the drug’s mid-stage trial shows there could be a healthier alternative to insulin injections.

pillsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When you give it as an injection, it goes straight into the blood stream but when we give it orally, it goes first, it’s passed to the liver . . . and the liver is the organ that regulates the secretion of the insulin into the blood stream so that’s why it’s the healthier, more physiological way to treat diabetes through oral insulin“, Kidron says.

The study is surprising because until now many researchers thought insulin couldn’t survive the onslaught of digestive juices. Oramed says the new drug uses a protective coating and a high-enough dose of insulin so that most of it can be destroyed and still deliver a clinically beneficial amount of the hormone. The results must be replicated in a larger Phase III trial before the drug, known as ORMD-0801, can be submitted for approval.

Source: http://www.oramed.com/

Diabetes: How To Avoid Amputation

Scientists from Tomsk Polytechnic University (TPU) in Russia along with National Autonomous Mexico University develop techniques to treat diabetic foot syndrome with silver nano-particles which special insoles are treated with. The techniques help to fight ulcers appearing on feet in diabetic patients, facilitates their healing and disinfection, reducing the risk of amputation.

Diabetic foot syndrome is one of the latest and most serious complications of diabetes. Due to the large amount of sugar in the body there are changes in peripheral nerves, blood vessels, skin and soft tissues, bones and joints of the patient. Infections, ulcers, suppurations and so on are emerging. Up to 15% of people with diabetes have the risk of developing ulcers on feet. In the advanced form diabetic foot syndrome can lead to amputation. Silver preparations being developed by Tomsk Polytechnic University jointly with Novosibirsk and Mexican counterparts are able to reduce such risks.

diabetes

 

The research has shown silver’s antibacterial properties facilitate rapid healing of ulcers and suppurations in patients with diabetic foot syndrome. Together with colleagues from Mexico, where the problem is particularly acute, we are working to create special insoles for diabetic patients. The development has passed clinical tests. In patients who had used the insoles impregnated with silver nanoparticles, leg ulcers healed up, the risk of amputations significantly reduced“, says TPU Professor Alexey Pestryakov, Head of the Department of Physical and Analytical Chemistry.

 Source: http://tpu.ru/

How To Monitor and Combat Diabetes With A Simple Patch

In the future, diabetics may be able to replace finger prick tests and injections with this non-invasive smart patch to keep their glucose levels in check.

patch against diabetesCLICK ON THE IMAGE TO ENJOY THE VIDEO

The device is a type of patch which enables diabetic patients to monitor blood sugar levels via sweat without taking blood samples and control glucose levels by injecting medication“, says Kim Dae-Hyeong, researcher at the Institute for Basic Science (IBS), Seoul National University, South Korea.

After analyzing the patient’s sweat to sense glucose, the patch’s embedded sensors constantly test pH, humidity, and temperature – important factors for accurate blood sugar readings. The graphene-based patch is studded with micro-needles coated with medication that pierce the skin painlessly. When the patch senses above normal glucose levels a tiny heating element switches on which dissolves the medication coating the microneedles and releases it into the body. The prototype worked well in mice trials.

Diabetic patients can easily use our device because it does not cause any pain or stress them out. So they can monitor and manage blood glucose levels more often to prevent increasing it. Therefore, our device can greatly contribute to helping patients avoid complications of the disease“, comments Professor Kim Dae-Hyeong. Researchers want to lower the cost of production, while figuring out how to delivery enough medication to effectively treat humans, both major hurdles towards commercialization. The research was published in the journal Nature Nanotechnology in March.

Source: http://www.ibs.re.kr/

20 Pence Reusable Sensor To Detect Diabetes

A low-cost, reusable sensor which uses nanotechnology to screen for and monitor diabetes and other conditions, has been developed by an interdisciplinary team of researchers from the University of Cambridge, for use both in clinics and home settings. According to the International Diabetes Federation, there are an estimated 175 million undiagnosed diabetic patients worldwide, 80% of whom live in low- and middle– income countries. Development of non-invasive and accurate diagnostics that are easily manufactured, robust and reusable will allow for simple monitoring of high-risk individuals in any environment, particularly in the developing world.

These sensors can be used to screen for diabetes in resource-poor countries, where disposable test strips and other equipment are simply not affordable,” said Ali Yetisen, a PhD candidate in the Department of Chemical Engineering & Biotechnology, who led the research. The sensors can be produced at a fraction of the cost of commercially-available test strips. A single sensor would cost 20 pence to produce, and can be reused up to 400 times
The sensors use nanotechnology to monitor levels of glucose, lactate and fructose in individuals with diabetes or urinary tract infections, and change colour when levels reach a certain concentration. They can be used to test compounds in samples such as urine, blood, saliva or tear fluid. Recently, the team has also partnered with a non-governmental organisation to deploy the technology for field use in Ghana early next year.

Source: http://www.cam.ac.uk/

Portable Breathalyzer Detects Diabetes

A novel hand-held, noninvasive monitoring device that uses multilayer nanotechnology to detect acetone has been shown to correlate with blood-glucose levels in the breath of diabetics. Ronny Priefer, Ph.D., of Western New England University – Springfield, USA -, created the multilayer technology using nanometer-thick films consisting of two polymers that react with acetone. This crosslinks the polymers and alters the physicochemical nature of the film, which provides a quantification of the acetone and thus the blood-glucose levels.

Alcosensor3
Breathalyzers are a growing field of study because of their potential to have a significant positive impact on patients’ quality of life and compliance with diabetes monitoring. What makes our technology different is that it only accounts for acetone and doesn’t react with other components in the breath,” said Priefer. “The breathalyzer we currently have is about the size of a book, but we’re working with an engineer, Dr. Michael Rust at Western New England University, to make it smaller, more similar to the size of a breathalyzer typically used to detect blood alcohol content levels.
Source: http://www.eurekalert.org/

Mounted On Smarphones, Sensors Diagnose Diabetes

Today’s technological innovation enables smartphone users to diagnose serious diseases such as diabetes or lung cancer quickly and effectively by simply breathing into a small gadget, a nanofiber breathing sensor, mounted on the phones.
sensors
Cell- Phones, Sensors Diagnose Diabetes

Il-Doo Kim, Associate Professor of Materials Science and Engineering Department at the Korea Advanced Institute of Science and Technology (KAIST) -Korea -, and his research team have recently published a cover paper entitled “Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled Breath-Sensing Properties for the Diagnosis of Diabetes,” in an academic journal, Advanced Functional Materials (May 20th issue), on the development of a highly sensitive exhaled breath sensor by using hierarchical SnO2 fibers that are assembled from wrinkled thin SnO2 nanotubes.

Source: http://www.eurekalert.org/

The Diabetes ‘Breathalyzer’

Chemists at the University of Pittsburgh have demonstrated a sensor technology that could significantly simplify the diagnosis and monitoring of diabetes through breath analysis alone.
Even before blood tests are administered, those with diabetes often recognize the condition’s symptoms through their breath acetone—a characteristic “fruity” odor that increases significantly with high glucose levels. The Pitt team was interested in this biomarker as a possible diagnostic tool.
Breathalyzer
Once patients are diagnosed with diabetes, they have to monitor their condition for the rest of their lives,” said Alexander Star, principal investigator of the project and Pitt associate professor of chemistry. “Current monitoring devices are mostly based on blood glucose analysis, so the development of alternative devices that are noninvasive, inexpensive, and provide easy-to-use breath analysis could completely change the paradigm of self-monitoring diabetes.
The research has been published in in the Journal of the American Chemical Society (JACS).

Source: http://www.news.pitt.edu/