Robots With The Sense Of Touch

A team of researchers from the University of Houston (UH) has reported a breakthrough in stretchable electronics that can serve as an artificial skin, allowing a robotic hand to sense the difference between hot and cold, while also offering advantages for a wide range of biomedical devices.

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering and lead author for the paper, said the work is the first to create a semiconductor in a rubber composite format, designed to allow the electronic components to retain functionality even after the material is stretched by 50 percent. The semiconductor in rubber composite format enables stretchability without any special mechanical structure. Yu noted that traditional semiconductors are brittle and using them in otherwise stretchable materials has required a complicated system of mechanical accommodations. “That’s both more complex and less stable than the new discovery, as well as more expensive.”

Our strategy has advantages for simple fabrication, scalable manufacturing, high-density integration, large strain tolerance and low cost,” he said.

Yu and the rest of the team – co-authors include first author Hae-Jin Kim, Kyoseung Sim and Anish Thukral, all with the UH Cullen College of Engineering – created the electronic skin and used it to demonstrate that a robotic hand could sense the temperature of hot and iced water in a cup. The skin also was able to interpret computer signals sent to the hand and reproduce the signals as .

The robotic skin can translate the gesture to readable letters that a person like me can understand and read,” Yu said.

The work is reported in the journal Science Advances.

Source: http://www.uh.edu/

Perfect Artificial Skin For Robots

A pioneering new technique to produce high-quality, low cost graphene could pave the way for the development of the first truly flexibleelectronic skin’, that could be used in robots.

Researchers from the University of Exeter (UK) have discovered an innovative new method to produce the wonder material Graphene significantly cheaper, and easier, than previously possible.

The research team, led by Professor Monica Craciun, have used this new technique to create the first transparent and flexible touch-sensor that could enable the development of artificial skin for use in robot manufacturing. Professor Craciun, from Exeter’s Engineering department, believes the new discovery could pave the way for “a graphene-driven industrial revolution” to take place.

robot female

The vision for a ‘graphene-driven industrial revolution’ is motivating intensive research on the synthesis of high quality and low cost graphene. Currently, industrial graphene is produced using a technique called Chemical Vapour Deposition (CVD). Although there have been significant advances in recent years in this technique, it is still an expensive and time consuming process, ”she said.

The Exeter researchers have now discovered a new technique, which grows graphene in an industrial cold wall CVD system, a state-of-the-art piece of equipment recently developed by UK graphene company Moorfield.

This so-called nanoCVD system is based on a concept already used for other manufacturing purposes in the semiconductor industry. This shows to the semiconductor industry for the very first time a way to potentially mass produce graphene with present facilities rather than requiring them to build new manufacturing plants. This new technique grows graphene 100 times faster than conventional methods, reduces costs by 99 % and has enhanced electronic quality.

These research findings are published in the journal Advanced Materials.

Source: http://www.exeter.ac.uk/