Graphene Ripples, Clean And Limitless Energy Source

Graphene is a seemingly impossible material. For years, scientists had theorized that lifting a single layer of carbon atoms from a chunk of graphite could produce the first two-dimensional material, which they called graphene. Finally, in 2004, this was accomplished by two physicists at the University of Manchester, who earned the Nobel Prize in Physics for this breakthrough. There was a problem, however: two dimensional materials violate the laws of physics. Without the support of a substrate, physics predicts they would tear apart or melt, even at a temperature of absolute zero. Physicists had to find a loophole to explain their existence.

That loophole turned out to be related to a phenomenon known as Brownian motion, small random fluctuations of the carbon atoms that make up graphene. This causes the material to ripple into the third dimension, similar to waves moving across the surface of the ocean. These movements in and out of the flat surface allow graphene to stay comfortably within the laws of physics.

Ever since Robert Brown discovered Brownian motion in 1827, scientists have wondered whether they could harvest this motion as a source of energy. The research of Paul Thibado, professor of physics at the University of Arkansas, provides strong evidence that the motion of graphene could indeed be used as a source of clean, limitless energy. Other researchers have theorized that temperature-induced curvature inversion in graphene could be used as an energy source, and even predicted the amount of energy they could produce. What sets Thibado’s work apart is his discovery that graphene has naturally occurring ripples that invert their curvature as the atoms vibrate in response to the ambient temperature.

This is the key to using the motion of 2D materials as a source of harvestable energy,” Thibado said. Unlike atoms in a liquid, which move in a random directions, atoms connected in a sheet of graphene move together. This means their energy can be collected using existing nanotechnology.

These results have been published in the journal Physical Review Letters.

Source: https://researchfrontiers.uark.edu

Editing Genes In Human Embryos

Two new CRISPR tools overcome the scariest parts of gene editing.The ability to edit RNA and individual DNA base pairs will make gene editing much more precise. Several years ago, scientists discovered a technique known as CRISPR/Cas9, which allowed them to edit DNA more efficiently than ever before.
Since then, CRISPR science has exploded; it’s become one of the most exciting and fast-moving areas of research, transforming everything from medicine to agriculture and energy. In 2017 alone, more than 14,000 CRISPR studies were published.

But here’s the thing: CRISPR, while a major leap forward in gene editing, can still be a blunt instrument. There have been problems with CRISPR modifying unintended gene targets and making worrisome, and permanent, edits to an organism’s genome. These changes could be passed down through generations, which has raised the stakes of CRISPR experiments — and the twin specters of “designer babies” and genetic performance enhancers — particularly when it comes to editing genes in human embryos.
So while CRISPR science is advancing quickly, scientists are still very much in the throes of tweaking and refining their toolkit. And on Wednesday, researchers at the Broad Institute of MIT and Harvard launched a coordinated blitz with two big reports that move CRISPR in that safer and more precise direction.
In a paper published in Science, researchers described an entirely new CRISPR-based gene editing tool that targets RNA, DNA’s sister, allowing for transient changes to genetic material. In Nature, scientists described how a more refined type of CRISPR gene editing can alter a single bit of DNA without cutting it — increasing the tool’s precision and efficiency.

The first paper, out Wednesday in Science, describes a new gene editing system. This one, from researchers at MIT and Harvard, focuses on tweaking human RNA instead of DNA.

Our cells contain chromosomes made up of chemical strands called DNA, which carry genetic information. Those genes have recipes for proteins that lead to a bunch of different traits. But to carry out the instructions in any one recipe, DNA needs another type of genetic material called RNA to get involved.

RNA is ephemeral: It acts like a middleman, or a messenger. For a gene to become a protein, that gene has to be transcribed into RNA in the cell, and the RNA is then read to make the protein. If the DNA is permanent — the family recipe book passed down through generations — the RNA is like your aunt’s scribbled-out recipe on a Post-It note, turning up only when it’s needed and disappearing again.

With the CRISPR/Cas9 system, researchers are focused on editing DNA. (For more on how that system works, read this Vox explainer.) But the new Science paper describes a novel gene editing tool called REPAIR that’s focused on using a different enzyme, Cas13, to edit that transient genetic material, the RNA, in cells. REPAIR can target specific RNA letters, or nucleosides, that are involved in single-base changes that regularly cause disease in humans.

This is hugely appealing for one big reason: With CRISPR/Cas9, the changes to the genome, or the cell’s recipe book, are permanent. You can’t undo them. With REPAIR, since researchers can target single bits of ephemeral RNA, the changes they make are transient, even reversible. So this system could fix genetic mutations without actually touching the genome (like throwing away your aunt’s Post-It note recipe without adding it to the family recipe book).

Source: https://www.vox.com/

Efficient, Fast, Large-scale 3-D Manufacturing

Washington State University (WSU) researchers have developed a unique, 3-D manufacturing method that for the first time rapidly creates and precisely controls a material’s architecture from the nanoscale to centimeters – with results that closely mimic the intricate architecture of natural materials like wood and bone.

3D manufacturing Hex-Scaffold-web-

This is a groundbreaking advance in the 3-D architecturing of materials at nano- to macroscales with applications in batteries, lightweight ultrastrong materials, catalytic converters, supercapacitors and biological scaffolds,” said Rahul Panat, associate professor in the School of Mechanical and Materials Engineering, who led the research. “This technique can fill a lot of critical gaps for the realization of these technologies.”

The WSU research team used a 3-D printing method to create foglike microdroplets that contain nanoparticles of silver and to deposit them at specific locations. As the liquid in the fog evaporated, the nanoparticles remained, creating delicate structures. The tiny structures, which look similar to Tinkertoy constructions, are porous, have an extremely large surface area and are very strong.

The researchers would like to use such nanoscale and porous metal structures for a number of industrial applications; for instance, the team is developing finely detailed, porous anodes and cathodes for batteries rather than the solid structures that are now used. This advance could transform the industry by significantly increasing battery speed and capacity and allowing the use of new and higher energy materials.

They report on their work in the journal  Science Advances  and have filed for a patent.

Source: https://news.wsu.edu/

Device Doubles The Energy Conversion Of Solar Cells

Scientists from Japan are utilizing nanotechnology advancements to strengthen solar cellsSolar cells convert light into electricity using a bevy of sources, including light from the sun and the burning of natural resources such as oil and natural gas. However, the cells do not convert all light to power equally, which led to scientists attempting to find ways to produce more power. The flame of a gas burner will shift from red to blue as the heat increases because higher temperatures emit light at shorter wavelengths. Higher heat offers more energy, making short wavelengths an important target in the design of solar cells. Kyoto University‘s Takashi Asano, began using optical technologies to improve energy production.

device to double the power of solar cells

Current solar cells are not good at converting visible light to electrical power. The best efficiency is only around 20 percent,” Asano said in a statement. “The problem is that heat dissipates light of all wavelengths, but a solar cell will only work in a narrow range. To solve this, we built a new nano-sized semiconductor that narrows the wavelength bandwidth to concentrate the energy.

The researchers were able to use their nanoscale semiconductor to raise the energy conversion rate to at least 40 percent. Asano and researchers at the Susumu Noda lab had previously attempted to work with higher wavelengths. “Our first device worked at high wavelengths but to narrow output for visible light required a new strategy, which is why we shifted to intrinsic silicon in this current collaboration with Osaka Gas,” Asano said. Visible wavelengths are emitted at 1000 degrees Celsius but conveniently silicon has a melting temperature of over 1,400 degrees Celsius.

This concept was utilized by the scientists, who etched silicon plates to have a large number of identical and equidistantly-spaced rods, the height, radii and spacing of which was optimized for the target bandwidth. Susumu Noda, a professor at Kyoto University, explained the benefits of the advancement: “Our technology has two important benefits. First is energy efficiency: we can convert heat into electricity much more efficiently than before. Secondly is design:  we can now create much smaller and more robust transducers, which will be beneficial in a wide range of applications.”

The study was published in Science Advances.

Source: http://www.rdmag.com/

How To Scavenge Simultaneously Solar And Wind Energy

To realize the sustainable energy supply in a smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors.

solar and wind powered houseAlthough the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be eectively utilized since conventional wind turbine generators can only be installed in remote areas due to their large volumes and safety issues.
Here, the researchers from the Chinese Academy of Sciences rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenge solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm × 22 mm, the SC can deliver a largest outputpower of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG.
This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.

Source: https://www.researchgate.net/

Nanotechnology Improves Next Generation Of Batteries

In the global race to create more efficient and long-lasting batteries, some are betting on nanotechnology — the use of minuscule parts — as the most likely to yield a breakthrough. Improving batteries’ performance is key to the development and success of many much-hyped technologies, from solar and wind energy to electric cars. They need to hold more energy, last longer, be cheaper and safer. Research into how to achieve that has followed several avenues, from using different materials than the existing lithium-ion batteries to changing the internal structure of batteries using nanoparticles — parts so small they are invisible to the naked eye. Nanotechnology can increase the size and surface of batteries electrodes, the rods inside the batteries that absorb the energy. It does so by effectively making the electrodes sponge-like, so that they can absorb more energy during charging and ultimately increasing the energy storage capacity. Prague-based company HE3DA in Czech Republic has developed such a technology by using the nanotechnology to move from the current flat electrodes to make them three dimensional. With prototypes undergoing successful testing, it hopes to have the battery on the market at the end of this year.

Tesla Model 3

In the future, this will be the mainstream,” said Jan Prochazka, the president. He said it would be targeted at high-intensity industries like automobiles and the energy sector, rather than mobile phones, because that is where it can make the biggest difference through its use of his bigger electrodes.

In combination with an internal cooling system the batteries, which are being tested now, should be safe from overheating or exploding, a major concern with existing technologies. Researchers at the University of Michigan and MIT have likewise focused on nanotechnology to improve the existing lithium-ion technology. Others have sought to use different materials. One of the most promising is lithium oxygen, which theoretically could store five to 10 times the energy of a lithium ion battery, but there have been a number of technical problems that made it inefficient. Batteries based on sodium-ion, aluminium-air and aluminium-graphite are also being explored. There’s even research on a battery powered by urine.

Source: http://www.he3da.cz/
AND
http://bigstory.ap.org/

Electric Car: Water Is The Future Fuel

Canadelectrochim, a non profit research and development Canadian company, have discovered a new non-platinum and nano-sized catalyst for the fuel cell based on Mother Nature which mimics the plant leaf.  The Polymer electrolyte membrane or proton exchange membrane fuel cell (PEMFC) as an optimal solution for the future energy economy.
hydrogen fuel cellsThe PEMFC, where chemical energy is directly converted to electrical energy, provides a highly efficient alternative to a standard internal combustion engine. High power density, clean emissions (water), low temperature operation, rapid start-up and shutdown, and ability to use fuels from renewable sources are several reason why fuel cells such as PEMFC have attracted attention for large market applications, such as transportation. With these unique features, PEMFC will revolutionize the future energy economy.
PEMFC will indirectly make water our future fuel. Hydrogen and oxygen generated by splitting water using photosynthesis can be used as a fuel for PEMFC. PEMFC are leading candidates to power the space shuttle and other mobile applications even down to mobile phones, however, there are still some important issues that must be resolved in order for PEMFC to be commercially competitive. It is known that splitting a hydrogen molecule at the anode of fuel cell using platinum is relatively easy. Unfortunately however, splitting the oxygen molecule at the cathode of fuel cell (oxygen reduction reaction (, ORR)) is more difficult and this causes significant polarization losses (lowers efficiency of the fuel cell). An appropriate catalyst for this process has not been discovered and as of yet platinum is the best option. In the direction of operating the fuel cell using a cost effective and non-platinum based catalyst, is the work of Canadelectrochim.

Source: http://www.canadelectrochim.net/

Hydrogen Batteries Power Airliners Galley

Fuel cells hidden inside trolleys used to serve passengers their in-flight drinks could generate enough additional energy to power an airliner’s entire galley, according to German researchers. Passengers on airliners are used to their in-flight snacks coming from the flight attendant’s trolley. In the future, that trolley could provide enough power to cook a plane-load of meals. German researchers have been showcasing their portable fuel cell at the Paris Air show.

air attendantCLICK ON THE IMAGE TO ENJOY THE VIDEO

What you see here is an energy generation system with a tank, a reformer, a fuel cell and a battery. The fuel cell hybrid system produces enough power for one galley and if I put it in, you can see the galley is now powered by the trolley,” said  Ronny Knepple, head of energy systems at developer Diehl Aerospace. Diehl‘s humble-looking trolley houses a tank filled with liquid propylene glycol which provides the hydrogen – the fuel source for the battery.

“The propylene glycol from the tank is evaporated and here in the reformer at high temperature the hydrogen is extracted from the propylene glycol,” explains Professor Gunther Kolb from Fraunhofer Institute for Chemical Technology (Germany)  and one of the power unit’s designers.
A catalytic converter in the trolley transforms the toxic by-products of the reaction into carbon dioxide and water. And the compact unit is lighter and smaller than conventional energy systems.
We have used here our special plate heat exchanger technology, which allows us to reduce weight and especially the size of the system considerably. In some cases here, we could save 90 percent of the space required by conventional technology,” adds Prof. Kolb. Planes in service for decades are often refurbished with power-hungry new technology in their galleys. Diehl and its collaborators hope their system will provide an independent power source for increased energy demands. The prototype lighting up the galley in Paris could be seen on airliners within 2 years.

Source: http://www.diehl.com/

Wind Turbines Generate Electricity Without Rotating

A suspension bridge in the United States stretching – and collapsing – in high winds in 1940… …inspires a silent, swaying new-look wind turbine in Spain today. The bladeless turbine generates power from a single conewobbling‘ in the wind. It’s just like an opera singer hitting the high notes and shattering glass, says the developer.

wind turbineCLICK ON THE IMAGE TO ENJOY THE VIDEO

We have all seen how a soprano who sings at a glass, by matching the tone of the voice to the glass, can breaking it. This type of resonance is a great way to transmit energy. What we do is, instead of using sound waves, is use the swirls, the vortices that are generated by a structure with wind“, says David Yanez, who co-founded the Spanish start-up, Vortex Bladeless.
The six-metre windmill, made from fibreglass and carbon fibre, uses those wind vortices to create patterns of movement that can be converted into energy. The magnets at the base of the cone-shaped blade allow its movements to adjust according to the wind speed.

What we have is a mast, which is the top piece, and acts as a blade, it’s constructed from the same material as a conventional generator, and what it does is oscillate transmitting its oscillation to a conventional alternator which by its own oscillation converts the wind’s energy into electric energy.” Vortex says its turbine will cost around 40 percent less than conventional three-bladed windmills, with a smaller carbon footprint and much lower maintenance costs. And it’s much safer for passing birds. Encouraged by the results so far, Vortex is testing a smaller prototype for domestic use in developing countries.
What we are trying to do now is develop a very small energy distribution sample that is less than three metres high and can be set up on the rooftops of homes“, adds David Yanez.

Vortex‘s new turbine could prove a boost for renewable energy after Spain’s financial crisis hit the industry hard. With investment, the start-up hopes generating energy from wind will be a breeze.
Source: https://www.indiegogo.com/
AND
https://www.youtube.com/

Computer: Nano Optical Cables To Replace Copper

Electrical engineers design nano-optical cables that could replace copper wiring on computer chips. The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips. This could result in radical increases in computing speeds and reduced energy use by electronic devices. A new step towards the nanocomputer era.
photonics

We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnect—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professosr leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.
At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

Source: http://uofa.ualberta.ca/

Thousand Miles Range Electric Car

Imagine owning an electric vehicle that can travel 1,000 miles (1610 km) before needing to be recharged. Now imagine that same vehicle being able to be charged to capacity in less than 5 minutes. Or, imagine owning a smart phone that only needs to be charged once a week and that charge taking less than one minute. Now a little start-up company, HyCarb, led by Sigrid Cottrell, is working to allow that imaginary world to come true. Hyper efficient supercapacitors & batteries are designed by utilizing Nanotechnology and nano-super structure technologies in order to power the next generation of consumer electronics, electric vehicles, military equipment and medical devices. They function as both a battery and a supercapacitor. They provide the long, steady power output comparable to a conventional battery, as well as a supercapacitor’s quick burst of high energy.

2014 Renault

HyCarb, Inc. is a Florida-based, for-profit, small business, headquartered at the UCF Business Incubator in Research Park. The team of researchers has already filed 3 patents protecting the system of processes required to generate a Hy-Carb supercapictor battery develops nanostructured materials using high-throughput combinatorial electrochemical methods and other proprietary techniques.

Nano-engineered battery/super capacitor is lightweight, ultra thin, completely flexible, and geared toward meeting the trickiest design and energy requirements of tomorrow’s gadgets, electric vehicles, implantable medical equipment and any number of other applications. aligned carbon nanotubes, which will give the device its black color. The nanotubes act as electrodes and allow the storage devices to conduct electricity.
The creation of this unique nano-composite surface drew from a diverse pool of disciplines, requiring expertise in materials science, energy storage, and chemistry. Along with use in small handheld electronics, the batteries’ lighter weight could make them ideal for use in automobiles, aircraft, and even boats. The Hy-Carb Supercapicitor could also be manufactured into different shapes, such as a car door, which would enable important new engineering innovations. .
Source: http://www.hy-carb.com/

Mimic Nature To Build Man-made Molecular Systems

Using molecules of DNA like an architectural scaffold, Arizona State University (ASU) scientists, in collaboration with colleagues at the University of Michigan, have developed a 3-D artificial enzyme cascade that mimics an important biochemical pathway, a major breakthrough for future biomedical and energy applications.


Remaking an artificial enzyme pair in the test tube and having it work outside the cell is a big challenge for DNA nanotechnology. To meet the challenge, they first made a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to customize the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, a research team led by ASU professor Hao Yan affixed a single strand of DNA, with the molecule called NAD+ tethered to the end like a ball and string. Yan refers to this as a swinging arm, which is long, flexible and dexterous enough to rock back and forth between the enzymes to carry out a chemical reaction

We look to Nature for inspiration to build man-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Yan said, who holds the Milton Glick Chair in the ASU Department of Chemistry and Biochemistry.
An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Yan.
The findings were published in the journal Nature Nanotechnology.
Source: https://asunews.asu.edu/