A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.

Source: http://www.wired.co.uk/

Brain: Graphene Interacts Safely With Neurons

Researchers from the University of Trieste (Italy) and the University of Cambridge have successfully demonstrated how it is possible to interface graphene – a two-dimensional form of carbon – with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease. Previously, other groups had shown that it is possible to use treated graphene to interact with neurons. However the signal to noise ratio from this interface was very low. By developing methods of working with untreated graphene, the researchers retained the material’s electrical conductivity, making it a significantly better electrode.

graphene interacts in the brain

For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.

The research, published in the journal ACS Nano, was an interdisciplinary collaboration coordinated by the University of Trieste in Italy and the Cambridge Graphene Centre.

Source: http://www.cam.ac.uk/

Walking Again After Spinal Cord Injuries

Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL)  in Switzerland proved in 2012 that electrical-chemical stimulation of the spinal cord could restore lower body movement in paralysed rats. Now they’re a step closer to making this a possibility for humans with spinal injuries. By applying so-called ‘surface implants‘ directly to the spinal cord, any movement or stretching of the nerve tissues could cause inflammation and, ultimately, rejection of the implant. This is their solution. Called e-Dura, it’s a soft and stretchy implant that can be bent and deformed similar to the living tissue that surrounds it.

EPFL SPINAL CORD REPAIRCLICK ON THE IMAGE TO ENJOY THE VIDEO

One important aspect of our studies is that we design the implant so that it could, one day, be used in a therapeutical context. So we wanted an implant that could stay for quite some time in vivo without inducing any detrimental effect. And so the first question we asked was: is soft making a difference?“, said Professor Stephanie Lacour, co-author of the study at EPFL.
E-Dura has a small tube through which neuro-transmitting drugs can be administered to the injured tissue to reanimate nerve cells. Built by on-site engineers, the device is made from silicon substrate covered with stretchable gold electric conducting tracks. Researchers found that when the prototype was implanted into rats’ spinal cords it caused neither damage nor rejection, even after two months. They concede, however, there is one significant hurdle to overcome.

There’s no link at the moment between the brain; so the motor command between the brain and the actual stimulation pattern on the spinal cord. So we now also have to find a way to link the two so that the person will think about moving and, indeed, the stimulation will be synchronised“, comments Prof. Lacour.
The team has set its sights on human clinical trails, and sees potential new therapies for e-Dura to treat conditions such as epilepsy, Parkinson’s disease and pain management.

Source: http://actu.epfl.ch/