Universal Vaccine Against Influenza A Viruses

Researchers have developed a universal vaccine to combat influenza A viruses that produces long-lasting immunity in mice and protects them against the limitations of seasonal flu vaccines, according to a study led by Georgia State UniversityInfluenza, a contagious respiratory illness that infects the nose, throat and lungs, is among the leading causes of death in the United States, according to the Centers for Disease Control and Prevention (CDC). The CDC estimates influenza has resulted in between 12,000 and 56,000 deaths annually in the U.S. since 2010. Seasonal flu vaccines must be updated each year to match the influenza viruses that are predicted to be most common during the upcoming flu season, but protection doesn’t always meet expectations or new viruses emerge and manufacturers incorrectly guess which viruses will end up spreading. In 2009, the H1N1 pandemic caused 200,000 deaths during the first 12 months, and low vaccine effectiveness was also observed during the 2014-15 and 2016-17 flu seasons. A universal flu vaccine that offers broad protection against various viruses is urgently needed and would eliminate the limitations of seasonal flu vaccines.

Seasonal flu vaccines provide protective immunity against influenza viruses by targeting the exterior head of the virus’s surface protein, which is hem
agglutinin
(HA). The influenza virus trains the body to produce antibodies against inactivated virus particles containing the head of this protein, ideally preventing the head from attaching to receptors and stopping infection. However, the head is highly variable and is different for each virus, creating a need for better vaccines. This study uses a new approach and instead targets the inside portion of the HA protein known as the stalk, which is more conservative and offers the opportunity for universal protection.

In this study, the researchers found vaccinating mice with double-layered protein nanoparticles that target the stalk of this protein produces long-lasting immunity and fully protects them against various influenza A viruses. The findings are published in the journal Nature Communications.

Source: http://news.gsu.edu/

How To Detect, Kill Circulating Tumor Cells

A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study. The spaser can be used as an optical probe and when released into the body (possibly through an injection or drinking a solution), it can find and go after circulating tumor cells (CTCs), stick to them and destroy these cells by breaking them apart to prevent cancer metastases. The spaser absorbs laser light, heats up, causes shock waves in the cell and destroys the cell membrane.

The spaser, which stands for surface plasmon amplification by stimulated emission of radiation, is a nanoparticle, about 20 nanometers in size or hundreds times smaller than human cells. It has folic acid attached to its surface, which allows selective molecular targeting of cancer cells. The folate receptor is commonly overexpressed on the surface of most human cancer cells and is weakly expressed in normal cells. The discovery was made by researchers at Georgia State University, the University of Arkansas for Medical Sciences, the University of Arkansas at Little Rock and the Siberian Branch of the Russian Academy of Science.

There is no other method to reliably detect and destroy CTCs,” said Dr. Mark Stockman, director of the Center for Nano-Optics and professor of physics at Georgia State. “This is the first. This biocompatible spaser can go after these cells and destroy them without killing or damaging healthy cells. Any other chemistry would damage and likely kill healthy cells. Our findings could play a pivotal role in providing a better, life-saving treatment option for cancer patients.”

Metastatic cancer occurs when cancer spreads to distant parts of the body, often to the bone, liver, lungs and brain, through a process called metastasis. Many types of cancers refer to this as stage IV cancer. Once cancer spreads, it can be difficult to control, and most metastatic cancer can’t be cured with current treatments, according to the National Institute of Health’s National Cancer Institute. One of the most dangerous ways metastasizing occurs is through the CTCs, which this study aims to detect and destroy using spasers. The spasers used in this study measure just 22 nanometers, setting the record for the smallest nanolasers.

The findings are published in the journal Nature Communications.

Source: http://news.gsu.edu/

Possible Soft Cure For Inflammatory Bowel Disease

Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China. The scientists developed nanoparticles, or microscopic particles, to reduce the expression of  CD98, a glycoprotein that promotes inflammation.

IBD

Our results suggest this nanoparticle could potentially be used as an efficient therapeutic treatment for inflammation,” said Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State and researcher at the Atlanta Veterans Affairs Medical Center.

We targeted CD98 because we determined in a previous study that CD98 is highly over-expressed in activated immune cells involved in IBD.”

In the United States, as many as 1.3 million people suffer from IBD, which includes ulcerative colitis and Crohn’s disease, conditions with chronic or recurring abnormal response to the body’s immune system and inflammation of the gastrointestinal tract. IBD gets worse over time and causes severe gastrointestinal symptoms, such as persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite and weight loss. Surgery is required when medication can no longer control the symptoms, and patients also have an increased risk of colon cancer, according to the Centers for Disease Control and Prevention.

This study suggests the development of nanotherapeutic strategies could be an alternative to currently available drugs, which are limited by serious side effects, in treating inflammatory conditions such as IBD.

The findings are published in the journal Colloids and Surfaces B: Biointerfaces.

Source: http://news.gsu.edu/

How To Prevent Babies Bronchiolitis

A vaccine containing virus-like nanoparticles, or microscopic, genetically engineered particles, is an effective treatment for respiratory syncytial virus (RSV), according to researchers at Georgia State University.

Respiratory syncytial (sin-SISH-uhl) virus, or RSV, is a respiratory virus that infects the lungs and breathing passages. Healthy people usually experience mild, cold-like symptoms and recover in a week or two. But RSV can be serious, especially for infants and older adults. In fact, RSV is the most common cause of bronchiolitis (inflammation of the small airways in the lung) and pneumonia in children younger than 1 year of age in the United States. In addition, RSV is being recognized more often as a significant cause of respiratory illness in older adults.

baby-grandmother-

Recombinant engineered nanoparticle vaccines might be developed to prevent highly contagious respiratory pathogens such as RSV, as reported in this study,” said Dr. Sang-Moo Kang, a professor in the Institute for Biomedical Sciences at Georgia State.

In the study, mice were vaccinated with either 1) FG VLPs or virus-like nanoparticles expressing RSV fusion (F) and attachment glycoproteins (G) or 2) FI-RSV or formalin-inactivated RSV, which failed clinical vaccine trials in the 1960s because it caused severe vaccine-enhanced respiratory disease. The mice were infected with live RSV pathogen one year later after vaccination.

Mice vaccinated with FG VLPs showed no obvious sign of severe pulmonary disease in tissue examinations upon RSV infection and significantly lower levels of eosinophils, T-cell infiltration and inflammatory cytokines, but higher levels of antibodies and interferon-g antiviral cytokine, which are correlated with protection against RSV disease.

Their findings, have been published in the International Journal of Nanomedicine, and suggest this vaccine induces long-term protection against RSV. There is no licensed RSV vaccine.

Source; http://news.gsu.edu/