The Rise Of The Hydrogen Electric Car

Right now, if you want an alternative-fuel vehicle, you have to pick from offerings that either require gasoline or an electrical outlet. The gas-electric hybrid and the battery-powered car — your Toyota Priuses, Chevy Volts, and Teslas — are staples in this space. There are drawbacks for drivers of both types. You still have to buy gas for your hybrid and you have to plug in your Tesla — sometimes under less than favorable conditions — lest you be stranded someplace far away from a suitable plug. Beyond that, automakers have been out to find the next viable energy source. Plug-in vehicles are more or less proven to be the answer, but Toyota and a handful of other carmakers are investigating hydrogen.

toyota-mirai

That’s where the Toyota Mirai comes in. The Mirai‘s interior center stack has all the technology you would expect from a car that retails for $57,500, including navigation, Bluetooth, and USB connectivity. It’s all accessible by touch screens and robust digital displays.
A fill-up on hydrogen costs just about as much as regular gasoline in San Francisco. The Mirai gets an estimated 67 MPGe (67 Miles per gallon gasoline equivalent = 28,5 kilometers per liter)), according to Toyota.
It’s an ambitious project for Toyota because the fueling infrastructure for this car is minimal. There are only 33 public hydrogen-filling stations in the US, according to the US Department of Energy. Twenty-six of those stations are in California, and there’s one each in Connecticut, Massachusetts, and South Carolina.

If you include public and private hydrogen stations, then the total climbs to 58 — nationwide. Compare that to the more than 15,100 public electric-charging stations and the 168,000 retail gas stations in the US, and you can see the obvious drawback of hydrogen-powered cars. Despite this, the Mirai is an interesting project, and you must keep in mind that Japan at the Government level seems to bet on a massively hydrogen powered economy in the near future (fuel, heating, replacement of nuclear energy, trains, electric vehicles, etc…).

Source: http://www.businessinsider.com

How To Turn CO2 Into Rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphereturn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.

turn co2 into rockCLICK ON THE IMAGE TO ENJOY THE VIDEO

Measures to tackle the problem of increasing greenhouse gas emissions and resultant climate change are numerous. One approach is Carbon Capture and Storage (CCS), where CO2 is physically removed from the atmosphere and trapped underground. Geoengineers have long explored the possibility of sealing CO2 gas in voids underground, such as in abandoned oil and gas reservoirs, but these are susceptible to leakage. So attention has now turned to the mineralisation of carbon to permanently dispose of CO2.

Until now it was thought that this process would take several hundreds to thousands of years and is therefore not a practical option. But the current study – led by Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy – has demonstrated that it can take as little as two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says: “Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” adds Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.

Storing CO2 as carbonate minerals significantly enhances storage security which should improve public acceptance of Carbon Capture and Storage as a climate change mitigation technology,” says Dr Matter. “The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”

Source: http://www.southampton.ac.uk/

Fusion Power Is Close

Fusion power is the Holy Grail of energy production – seen by some as a silver bullet for a carbon-neutral future. The failure of the multi-billion dollar ITER project to produce reactor relevant fusion has disappointed scientists and environmentalists. But a batch of small firms like Tokamak Energy believes they’re close to cracking the mystery. The UK firm says its reactor‘s spherical shape and magnets made using high-temperature superconductors means it could be two years from reaching 100 million degrees Celsius. That’s seven times hotter than the sun’s core and the temperature necessary to achieve fusion.

fusion powerCLICK ON THE IMAGE TO ENJOY THE VIDEO

We’ve got a slightly different shape from traditional fusion and this allows us to get a higher plasma pressure for a given magnetic field. It’s a measure of efficiency called beta“, says Dr  Bill Huang, Senior engineer for Tokamak Energy.
Fusion is how stars produce energy. Investors are spending millions on small-scale fusion projects. Vast potential return makes them attractive, as does the fact that multiple methods of achieving fusion could all be profitable.  “First of all they can be constructed in a factory, so you’re talking about economies of scale; and the second key thing is the way in which the grid itself, the future grid, is likely to be more dispersed” , says Mark White, of  Rainbow Seeds, and investor.
Tokamak Energy is constructing its third reactor and hopes the fifth generation can transfer energy to the grid by 2030.  Dr David Kinghan, CEO of Tokamak Energy. adds: “If it could be harnessed, could be scaled up rapidly to be deployed world-wide by 2050 and could make a very big difference from 2050 onwards.”
With world leaders meeting in Paris to hammer out a deal to limit global emissions, fusion power may help them meet those promises.

Source: http://www.tokamakenergy.co.uk/
AND
http://uk.reuters.com/

Ocean: NanoMotors Remove Ninety Percent Of The Carbon Dioxide

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form. The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers.

nanomotorsNanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate

We’re excited about the possibility of using these micromotors to combat ocean acidification and global warming,” said Virendra V. Singh, a postdoctoral scientist in Wang’s research group and a co-first author of this study. In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant,” said Kevin Kaufmann, an undergraduate researcher in Wang’s lab and a co-author of the study.

The team, led by nanoengineering professor Joseph Wang, has published the work this month in the journal Angewandte Chemie.

Source: http://ucsdnews.ucsd.edu/

How To Trap Greenhouse Gases

Emissions from the combustion of fossil fuels like coal, petroleum and natural gas tend to collect within Earth’s atmosphere as “greenhouse gases” that are blamed for escalating global warming.

So researchers around the globe are on a quest for materials capable of capturing and storing greenhouse gases. This shared goal led researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur to team up to explore the feasibility of vertically aligned carbon nanotubes (VACNTs) to trap and store two greenhouse gases in particular: carbon dioxide (CO2) and sulfur dioxide (SO2). As the team reports in The Journal of Chemical Physics, from AIP Publishing, they discovered that gas adsorption in VACNTs can be influenced by adjusting the morphological parameters of the carbon nanotube thickness, the distance between nanotubes, and their height.

Carbon nanotubes against greenhouse gases
Snapshots of CO2 adsorption in double-walled carbon nanotube arrays (with an inner tube diameter of 2r=3 nanometers and various inter-tube distance at T=303 K and p=1 bar)

 

These parameters are fundamental for ‘tuning’ the hierarchical pore structure of the VACNTs,” explained Mahshid Rahimi and Deepu Babu, the paper’s lead authors and doctoral students in theoretical physical chemistry and inorganic chemistry at the Technische Universität Darmstadt. “This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does.

Source: https://www.aip.org/

How To Remove Greenhouse Gas From the Air

Finding a technology to shift carbon dioxide (CO2), the most abundant anthropogenic greenhouse gas, from a climate change problem to a valuable commodity has long been a dream of many scientists and government officials. Now, a team of chemists says they have developed a technology to economically convert atmospheric CO2 directly into highly valued carbon nanofibers for industrial and consumer products.

carbon nanofibers

We have found a way to use atmospheric CO2 to produce high-yield carbon nanofibers,” says Stuart Licht, Ph.D., who leads a research team at George Washington University. “Such nanofibers are used to make strong carbon composites, such as those used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other products.

Previously, the researchers had made fertilizer and cement without emitting CO2, which they reported. Now, the team, which includes postdoctoral fellow Jiawen Ren, Ph.D., and graduate student Jessica Stuart, says their research could shift COfrom a global-warming problem to a feed stock for the manufacture of in-demand carbon nanofibers.

Licht calls his approach “diamonds from the sky.” That refers to carbon being the material that diamonds are made of, and also hints at the high value of the products, such as the carbon nanofibers that can be made from atmospheric carbon and oxygen.

A press conference on this topic will be held Wednesday, Aug. 19, at 9:30 a.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at Room 153B in person, or watch live on YouTube. To ask questions online, sign in with a Google account.
Source: http://www.acs.org/
AND
http://home.gwu.edu/

Run A Car With Water And Air

The German automaker Audi announced it has created the first batch of liquid “e-diesel” at a research facility in Dresden. The clear fuel is produced through a “power to liquid” process, masterminded by the German clean tech company and Audi partner Sunfire.

The process uses carbon dioxide, the most common greenhouse gas, which can be captured directly from air. Carbon dioxide is created largely by burning fossil fuels and contributes to global warming. Now Sunfire said it can recycle the gas to make a more efficient, carbon-neutral fuel.
Unlike conventional fossil fuels, the “e-diesel” doesn’t contain sulphur and other contaminants.
audi e-diesel
The engine runs quieter and fewer pollutants are being created,” Sunfire‘s Christian von Olshausen said.
The fuel is produced in three steps. First, the researchers heat up steam to very high temperatures to break it down into hydrogen and oxygen. This process requires temperatures of over 800 degrees Celsius (1,472 Fahrenheit) and is powered by green energy such as solar or wind power.
Second, they mix the hydrogen with carbon dioxide under pressure and at high temperature to create so-called blue crude. Lastly, the blue crude is refined into fuels in a similar way fossil crude oil is refined into gasoline.
Audi (AUDVF) said its lab tests have shown the “e-diesel” can be mixed with fossil fuels or used as a fuel on its own.
At this stage the e-diesel cost 40 % more than the regular gasoline per liter to produce.
Source: http://www.sunfire.de/
AND
http://money.cnn.com/

Nano Sponges Cut Greenhouse Gases

In the fight against global warming, carbon capture – chemically trapping carbon dioxide before it releases into the atmosphere – is gaining momentum, but standard methods are plagued by toxicity, corrosiveness and inefficiency. Using a bag of chemistry tricks, Cornell materials scientists have invented low-toxicity, highly effective carbon-trapping “sponges” that could lead to increased use of the technology. A research team led by Emmanuel Giannelis, Professor of Engineering, has invented a powder that performs as well or better than industry benchmarks for carbon capture.
The researchers have been working on a better, safer carbon-capture method . Their latest consists of a silica scaffold, the sorbent support, with nanoscale pores for maximum surface area. They dip the scaffold into liquid amine, which soaks into the support like a sponge and partially hardens. The finished product is a stable, dry white powder that captures carbon dioxide even in the presence of moisture.

nanosponges
A scanning electron microscopy image of a pristine silica support, before the amine is added
We have made great strides in sustainability, particularly in the energy supply areas of alternative energy sources, and the demand side areas of energy conservation and building design standards,” KyuJung Whang, Cornell’s vice president for facilities services said.

A paper with their results, co-authored by postdoctoral associates Genggeng Qi and Liling Fu, appeared in Nature Communications.
Source: http://news.cornell.edu/

Graphene soaks up Carbon, Cause of Global Warming

Chemists and engineers at Oregon State University (OSU) have discovered a fascinating new way to take some of the atmospheric carbon dioxide that’s causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products.This innovation in nanotechnology won’t soak up enough carbon to solve global warming, researchers say. However, it will provide an environmentally friendly, low-cost way to make nanoporous graphene for use in “supercapacitors” – devices that can store energy and release it rapidly. Such devices are used in everything from heavy industry to consumer electronics.

greenhouse gas2
There are other ways to fabricate nanoporous graphene, but this approach is faster, has little environmental impact and costs less,” said Xiulei (David) Ji, an OSU assistant professor of chemistry in the OSU College of Science and lead author on the study. “The product exhibits high surface area, great conductivity and, most importantly, it has a fairly high density that is comparable to the commercial activated carbons. “And the carbon source is carbon dioxide, which is a sustainable resource, to say the least,” Ji said. “This methodology uses abundant carbon dioxide while making energy storage products of significant value.”

The findings were just published in Nano Energy by scientists from the OSU College of Science, OSU College of Engineering, Argonne National Laboratory, the University of South Florida and the National Energy Technology Laboratory in Albany, Ore. The work was supported by OSU.

Source: http://oregonstate.edu/

New Nanomaterials From CO2

In common perception, carbon dioxide is just a greenhouse gas, one of the major environmental problems of mankind. Carbon dioxide (CO2) is a natural component of Earth’s atmosphere. It is the most abundant carbon-based building block, and is involved in the synthesis of glucose, an energy carrier and building unit of paramount importance for living organisms. For Warsaw chemists CO2 became, however, something else: a key element of reactions allowing for creation of nanomaterials with unprecedented properties. In reaction with carbon dioxide, appropriately designed chemicals allowed researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Faculty of Chemistry, Warsaw University of Technology, (WUT) for production of unprecedented nanomaterials.
The novel materials are highly porous, and in their class they show the most extended, and so the largest surface area, which is of key importance for the envisaged use. Prospective applications include storage of energetically important gases, catalysis or sensing devices. Moreover, microporous fluorescent materials obtained using CO2 emit light with quantum yield significantly higher than those of classical materials used in OLEDs.

carbon dioxyde.2jpgYellow tennis balls symbolise crystal lattice of the microporous material resulting from self-assembly of nanoclusters. Orange balls imitate gas molecules that can adsorb in this material. The presentation is performed
Our research is not confined to fabrication of materials. Its particular importance comes from the fact that it opens a new synthetic route to metal carbonate and metal oxide based nanomaterials, the route where carbon dioxide plays a key role”, notices Prof. Janusz Lewiński (IPC PAS, WUT).
Carbon dioxide has been for years used in industrial synthesis of polymers. On the other hand, there has been very few research papers reporting fabrication of inorganic functional materials using CO2”, says Kamil Sokołowski, a doctoral student in IPC PAS.

The papers reporting accomplishments of Prof. Lewiński’s group, achieved in cooperation with Cambridge University and University of Nottingham, were published, i.a., by journals “Angewandte Chemie” and “Chemical Communications”.
Source: http://www.ichf.edu.pl/

How To Reduce CO2 Emissions From Power Stations

University of Adelaide – Australia – researchers have developed a new nanomaterial that could help reduce carbon dioxide emissions from coal-fired power stations.
The new nanomaterial, described in the Journal of the American Chemical Society, efficiently separates the greenhouse gas carbon dioxide from nitrogen, the other significant component of the waste gas released by coal-fired power stations. This would allow the carbon dioxide to be separated before being stored, rather than released to the atmosphere.

co2 emisssion
A considerable amount of Australia’s – and the world’s – carbon dioxide emissions come from coal-fired power stations,” says Associate Professor Christopher Sumby, project leader and ARC Future Fellow in the University’s School of Chemistry and Physics.
Removing CO2 from the flue gas mixture is the focus of a lot of research. Most of Australia’s energy generation still comes from coal. Changing to cleaner energies is not that straightforward but, if we can clean up the emissions, we’ve got a great stop-gap technology.

Sourc: http://www.newswise.com/

How To Save Earth From CO2 Pollution

Researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

The novel material developed by UNIST research team has exceptionally high CO2 adsorption capacity which could pave the way to save the Earth from CO2 pollution.

Nanoporous materials consist of organic or inorganic frameworks with a regular, porous structure. Because of their uniform pore sizes they have the property of letting only certain substances pass through, while blocking others. Nanoporous metal oxide materials are ubiquitous in materials science because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, non-siliceous metal oxide-based nanoporous materials still present challenges.
UNIST team
“I believe MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications, especially for energy-related materials” said Prof. Moon. “Because of its high CO2 adsorption capacity, it will open a new way for environmental solutions.

A description of the new research was published in the Journal of the American Chemical Society.

Source: http://www.unist.ac.kr/