Spintronics

A team of scientists led by Associate Professor Yang Hyunsoo from the National University of Singapore’s (NUS) Faculty of Engineering has invented a novel ultra-thin multilayer film which could harness the properties of tiny magnetic whirls, known as skyrmions, as information carriers for storing and processing data (nanocomputer) on magnetic media. The nano-sized thin film, which was developed in collaboration with researchers from Brookhaven National Laboratory, Stony Brook University, and Louisiana State University, is a critical step towards the design of data storage devices that use less power and work faster than existing memory technologies.

The digital transformation has resulted in ever-increasing demands for better processing and storing of large amounts of data, as well as improvements in hard drive technology. Since their discovery in magnetic materials in 2009, skyrmions, which are tiny swirling magnetic textures only a few nanometres in size, have been extensively studied as possible information carriers in next-generation data storage and logic devices.

Skyrmions have been shown to exist in layered systems, with a heavy metal placed beneath a ferromagnetic material. Due to the interaction between the different materials, an interfacial symmetry breaking interaction, known as the Dzyaloshinskii-Moriya interaction (DMI), is formed, and this helps to stabilise a skyrmion. However, without an out-of-plane magnetic field present, the stability of the skyrmion is compromised. In addition, due to its tiny size, it is difficult to image the nano-sized materials. The NUS team found that a large DMI could be maintained in multilayer films composed of cobalt and palladium, and this is large enough to stabilise skyrmion spin textures.

skyrmionsThis experiment not only demonstrates the usefulness of L-TEM in studying these systems, but also opens up a completely new material in which skyrmions can be created. Without the need for a biasing field, the design and implementation of skyrmion based devices are significantly simplified. The small size of the skyrmions, combined with the incredible stability generated here, could be potentially useful for the design of next-generation spintronic devices that are energy efficient and can outperform current memory technologies,” explains Professor Yang .

The invention was reported in the journal Nature Communications.

Source: http://news.nus.edu.sg

1 DNA Milligram encodes every book in the Library of Congress

Our genetic code packs billions of gigabytes into a single gram. A mere milligram of the molecule could encode the complete text of every book in the Library of Congress and have plenty of room to spare. All of this has been mostly theoretical —until now. In a new study, researchers from Harvard University stored an entire genetics textbook in less than a picogram of DNA—one trillionth of a gram— an advance that could revolutionize our ability to save data.


A device the size of your thumb could store as much information as the whole Internet,” said Harvard University molecular geneticist George Church, the project’s senior researcher.

Source: http://online.wsj.com/article/SB10000872396390444233104577593291643488120.html?mod=WSJUK_hpp_MIDDLELSMini

A 5 millions times smaller hard drive

Scientists from IBM and the German Center for Free-Electron Laser Science (CFEL) have built the world's smallest magnetic data storage unit. It uses just twelve atoms per bit, the basic unit of information, and squeezes a whole byte (8 bit) into as few as 96 atoms. A modern hard drive, for comparison, still needs more than half a billion atoms per byte. The team present their work in the weekly journal Science (13 January 2012). CFEL is a joint venture of the research centre Deutsches Elektronen-Synchrotron DESY in Hamburg, the Max-Planck-Society (MPG) and the University of Hamburg "With CFEL the partners have established an innovative institution on the DESY campus, delivering top-level research across a broad spectrum of disciplines," says DESY research director Edgar Weckert.

 

 

 An illustration of I.B.M.'s technique for storing data on a single atom. An iron atom on a copper surface could store a single bit of binary data, with "0" or "1" indicated by the orientation of the atom's magnetic field. 

 

Source: http://www.desy.de/information__services/press/pressreleases/@@news-view?id=2141&lang=eng