Breathing in Delhi air equivalent to smoking 44 cigarettes a day

It was early on the morning when residents in the Indian capital of Delhi first began to notice the thick white haze that had descended across the city. Initially viewed as a mild irritant, by mid-week its debilitating effects were evident to all, as the city struggled to adapt to the new eerie, martian-like conditions brought about by the pollution.

The World Health Organization considers anything above 25 to be unsafe. That measure is based on the concentration of fine particulate matter, or PM2.5, per cubic meter. The microscopic particles, which are smaller than 2.5 micrometers in diameter, are considered particularly harmful because they are small enough to lodge deep into the lungs and pass into other organs, causing serious health risks.
With visibility severely reduced, trains have been canceled, planes delayed and cars have piled into each other, with multiple traffic accidents reported across the city. On the afternoon, city chiefs closed all public and private schools, requesting instead that the city’s tens of thousands of school-aged children remain indoors; they banned incoming trucks and halted civil construction projects; while they announced new plans to begin implementing a partial ban on private car use as of next week. But as the city woke up to a fourth straight day of heavy pollution, practical considerations were being overtaken by more serious concerns, with journalists and doctors warning residents of the long-term health implications.

Air quality readings in the Indian capital have reached frightening levels in recent days, at one point topping the 1,000 mark on the US embassy air quality index. Across the capital, doctors reported a surge in patients complaining of chest pain, breathlessness and burning eyes. “The number of patients have increased obviously,” said Deepak Rosha, a pulmonologist at Apollo Hospital, one of the largest private hospitals in Delhi. “I don’t think it’s ever been so bad in Delhi. I’m very angry that we’ve had to come to this.”
Breathing in air with a PM2.5 content of between 950 to 1,000 is considered roughly equivalent to smoking 44 cigarettes a day, according to the independent Berkeley Earth science research group.

Understanding The Risks Of Nanotechnology

When radioactive materials were first introduced into society, it took a while before scientists understood the risks. The same is true of nanotechnology today, according to Dr Vladimir Baulin, from University Rovira i Virgili, in Tarragona, Spain, who together with colleagues has shown for the first time how nanoparticles can cross biological – or lipidmembranes in a paper published in the journal Science Advances
Nanotechnology is all around us, in building materials, in toothpaste and in cleaning products. Across Europe, hundreds of institutions are working together to look at how to monitor exposure, manage the risks and advise on what regulations may be needed under the EU’s NanoSafety Cluster.

nanoparticles effects on lipids

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer (main part of a biological membrane). This process was quantified and the time of each step was estimated. The lipid membrane is the ultimate barrier protecting cells from the outside environment and if the nanoparticles can cross this barrier they may go into cells.’

‘Dr Jean-Baptiste Fleury (from Saarland University in Germany) designed a special set-up with two chambers separated by a lipid bilayer, which contained fluorescent lipids (fat molecules). Non-fluorescent nanoparticles were added to only one of the chambers. In this set-up, nanoparticles became visible only when they touched the fluorescent bilayer and exchanged lipids with it. If one sees the fluorescent nanoparticle in the second chamber, this means it was in contact with the bilayer and it crossed the bilayer from one chamber to another. This was the proof. In addition, the process of translocation was quantified and the time of the crossing was estimated as milliseconds.’

All biological objects, biomolecules, proteins that exist in living organisms evolved over billions of years to adapt to each other. Nanoparticles which are synthesised in the laboratory are thus considered by a living organism as something foreign. It is a big challenge to make them compatible and not toxic.’ ‘I would count the applications of nanoparticles as starting from the 1985 Nobel Prize for the discovery of fullerenes (molecules of hollow football-shaped carbon). This was the start of the nanoparticle boom.’

This is becoming urgent because nanoparticles and nanotechnology in general are entering our lives. Now it is possible to synthesise nanomaterials with precise control, fabricate nanostructures on surfaces and do precise tailoring of the properties of nanoparticles.

‘It is becoming quite urgent to understand the exact mechanisms of nanotoxicity and make a classification depending on the mechanism. Radioactivity or X-rays entered our lives the same way. It took time until researchers understood the mechanisms of action on living organisms and the regulations evolved with our understanding.’

gold nanoparticles cross the membrane

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer.

An empirical test of toxicity is that you put nanoparticles into the cells and you see the cells are dead, but you don’t understand what has happened, this is empirical. This is a legitimate tool, but it is not enough to address toxicity. Instead, one could start from the properties of nanoparticles and think about classifying nano-objects based on their physical or chemical properties by trying to predict the effect of a given nanoparticle on a cell or tissue beforehand.

I understand, it may look too ambitious, since there are a lot of tiny details that are not considered at the moment in theoretical models or any classification. However, even if it may not be exact, it can give some guidance and it would be possible to make predictions on how nanoparticles and polymers interact with lipid membranes. For example, in this study we used theoretical modelling to suggest the size and surface properties of the nanoparticle that is able to cross the lipid membrane through a certain pathway and it was observed experimentally.’

Source: https://horizon-magazine.eu/

3D-printed Cast To The Exact Measurements Of Fractured Parts Of The Body

Move over plaster cast. There’s a new 3-D printed cast on the block, which means your days may be numbered. The NovaCast was created by Mexican start-up Mediprint and uses an open, 3D-printed, plastic framework. Each 3D-printed cast is custom-made to the exact measurements of the fractured part of the body, which developers say improves recovery time.

mediprint_3d_printed_castCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s lighter than the traditional cast. You can have a bath with it, you can scratch yourself, it allows for a better medical inspection“, says Zaid Musa Badwan Peralta, co-founder of the  Mediprint company.

The cast is printed after the patient’s body part is scanned. From there, the total time until a tailor made cast is ready – three hours. Developers say they’re working on an improved way to measure patients that will increase comfort by eliminating the need to scan the traumatized body part.

“It’s a specialised software, which through anthropometry measurements gives the medic exact details about the shape and size needs. And using information on 3-D models of the patient, the geometry of the cast is automatically calucalated for the printers. This generates a product that can reach more people“, adds Peralta.

Nova cast creators also expect to improve the production process and decrease printing time. No details on price and release of the casts onto the market yet, but creators hope that it isn’t long before the plaster cast is a thing of the past.

Source: http://mediprint3d.com

Power Source Woven Into Fabrics

Wearable power sources for wearable electronics are limited by the size of garments. With that in mind, researchers at Case Western Reserve University ( CWRU)  have developed flexible wire-shaped micro *supercapacitors that can be woven into a jacket, shirt or dress. By their design or by connecting the capacitors in series or parallel, the devices can be tailored to match the charge storage and delivery needs of electronics donned.

While there’s been progress in development of those electronics–body cameras, smart glasses, sensors that monitor health, activity trackers and more–one challenge remaining is providing less obtrusive and cumbersome power sources.

wearable electronics

The area of clothing is fixed, so to generate the power density needed in a small area, we grew radially-aligned titanium oxide nanotubes on a titanium wire used as the main electrode,” said Liming Dai, the Kent Hale Smith Professor of Macromolecular Science and Engineering. “By increasing the surface area of the electrode, you increase the capacitance.

Dai and Tao Chen, a postdoctoral fellow in molecular science and engineering at Case Western Reserve, published their research on the microsupercapacitor in the journal Energy Storage Materials. The study builds on earlier carbon-based supercapacitors.

*A capacitor is cousin to the battery, but offers the advantage of charging and releasing energy much faster.

Source: http://www.eurekalert.org/

Electronic Tatoo On The Skin Monitors Vital Signals

A team of researchers in the Cockrell School of Engineering at the University of Texas at Austin has invented a method for producing inexpensive and high-performing wearable patches that can continuously monitor the body’s vital signs for human health and performance tracking, potentially outperforming traditional monitoring tools such as cardiac event monitors. Led by Assistant Professor Nanshu Lu, the team’s manufacturing method aims to construct disposable tattoo-like health monitoring patches for the mass production of epidermal electronics, a popular technology that Lu helped develop in 2011.

The team’s breakthrough is a repeatable “cut-and-paste” method that cuts manufacturing time from several days to only 20 minutes. The researchers believe their new method is compatible with roll-to-roll manufacturing — an existing method for creating devices in bulk using a roll of flexible plastic and a processing machine.

Reliable, ultrathin wearable electronic devices that stick to the skin like a temporary tattoo are a relatively new innovation. These devices have the ability to pick up and transmit the human body’s vital signals, tracking heart rate, hydration level, muscle movement, temperature and brain activity. Although it is a promising invention, a lengthy, tedious and costly production process has until now hampered these wearables’ potential.

epidermal electronics

One of the most attractive aspects of epidermal electronics is their ability to be disposable,” Lu said. “If you can make them inexpensively, say for $1, then more people will be able to use them more frequently. This will open the door for a number of mobile medical applications and beyond.”

The UT Austin method is the first dry and portable process for producing these electronics, which, unlike the current method, does not require a clean room, wafers and other expensive resources and equipment. Instead, the technique relies on freeform manufacturing, which is similar in scope to 3-D printing but different in that material is removed instead of added.

The researchers published a paper on their patent-pending process in Advanced Materials.

Source: http://news.utexas.edu/

Nanotechnology: Food And Drug Administration Rules

Today, 3 final guidances and one draft guidance were issued by the U.S. Food and Drug Administration (FDA) providing greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products.
One final guidance addresses the agency’s overall approach for all products that it regulates, while the two additional final guidances and the new draft guidance provide specific guidance for the areas of foods, cosmetics and food for animals, respectively.

Nanotechnology is an emerging technology that allows scientists to create, explore and manipulate materials on a scale measured in nanometers—particles so small that they cannot be seen with a regular microscope. The technology has a broad range of potential applications, such as improving the packaging of food and altering the look and feel of cosmetics.

SILVER NANOPARTICLES

Our goal remains to ensure transparent and predictable regulatory pathways, grounded in the best available science, in support of the responsible development of nanotechnology products,” said FDA Commissioner Margaret A. Hamburg, M.D. “We are taking a prudent scientific approach to assess each product on its own merits and are not making broad, general assumptions about the safety of nanotechnology products.”

The 3 final guidance documents reflect the FDA’s current thinking on these issues after taking into account public comment received on the corresponding draft guidance documents previously issued (draft agency guidance in 2011; and draft cosmetics and foods guidances in 2012).

The FDA does not make a categorical judgment that nanotechnology is inherently safe or harmful, and will continue to consider the specific characteristics of individual products.
All 4 guidance documents encourage manufacturers to consult with the agency before taking their products to market. Consultations with the FDA, early in the product development process help to facilitate a mutual understanding about specific scientific and regulatory issues relevant to the nanotechnology product, and help address questions related to safety, effectiveness, public health impact and/or regulatory status of the product.
Source: http://www.fda.gov/

Your Smartphone Is Also A Portable Lab

Researchers from Cornell University are working on Smartphone Based Molecular Diagnostics. The technologies developed will enable you to monitor your own blood chemistry with your smartphone. Enabling personalized knowledge of our own physiological and nutritional status could dramatically enhance our quality of life. The idea: by 2016 there will be 250 million smartphones in use in the US. The newsystems that can exploit the ubiquity of smartphone for personalized monitoring of important elements of blood chemistry, like vitamins and micronutrients. The system exploits a series of microfluidic components, photonic technologies, and standard smartphone capabilities to analyze the content of a blood sample taken from a finger stick. The system is comprised of a reusable “accessory”, that interfaces directly with the USB port of the smartphone and contains the optical interrogation infrastructure, and a consumable “cartridge” or “chip”, that accepts the blood sample, processes it, and conducts the detection assay. Analysis results are displayed to the user via an on-board “app”, compared with optimal levels, and recommendations provided regarding any treatments.

smart_phone_large
Smartphone Based Molecular Diagnostics. This new technology will enable you to monitor your own blood chemistry with your smartphone. Enabling personalized knowledge of our own physiological and nutritional status could dramatically enhance our quality of life

The research has been supported by the National Institutes of Health, the Defense Advanced Research Projects Agency (DARPA) and the Cornell Nanobiotechnology Center.

Source: http://nano.mae.cornell.edu/

How To Replace Human Eye Lenses

Drawing heavily upon nature for inspiration, a team of researchers has created a new artificial lens that is nearly identical to the natural lens of the human eye. This innovative lens, which is made up of thousands of nanoscale polymer layers, may one day provide a more natural performance in implantable lenses to replace damaged or diseased human eye lenses, as well as consumer vision products; it also may lead to superior ground and aerial surveillance technology. This work, which the Case Western Reserve University, Rose-Hulman Institute of Technology, U.S. Naval Research Laboratory, and PolymerPlus team describes in the Optical Society’s (OSA) open-access journal Optics Express, also provides a new material approach for fabricating synthetic polymer lenses.
The fundamental technology behind this new lens is called “GRIN” or gradient refractive index optics. In GRIN, light gets bent, or refracted, by varying degrees as it passes through a lens or other transparent material. This is in contrast to traditional lenses, like those found in optical telescopes and microscopes, which use their surface shape or single index of refraction to bend light one way or another.

“The human eye is a GRIN lens,” said Michael Ponting, polymer scientist and president of PolymerPlus, an Ohio-based Case Western Reserve spinoff launched in 2010. “As light passes from the front of the human eye lens to the back, light rays are refracted by varying degrees. It’s a very efficient means of controlling the pathway of light without relying on complicated optics, and one that we attempted to mimic.
Source: http://www.osa.org

Nanoparticule Delivers 3 Times More Doses Against Bladder Cancer

A team of University of California Davis – UC Davis – scientists has shown in experimental mouse models that a new drug delivery system allows for administration of three times the maximum tolerated dose of a standard drug therapy for advanced bladder cancer, leading to more effective cancer control without increasing toxicity. The delivery system consists of specially designed nanoparticles that home in on tumor cells while carrying the anti-cancer drug paclitaxel. The same delivery system also was successfully used to carry a dye that lights up on imaging studies, making it potentially useful for diagnostic purposes.

We have developed a novel, multifunctional nanotherapeutics platform that can selectively and efficiently deliver both diagnostic and therapeutic agents to bladder tumors,” said Chong-Xian Pan, principal investigator of the study and associate professor of hematology and oncology at UC Davis. “Our results support its potential to be used for both diagnostic and therapeutic applications for advanced bladder cancer.”

Source: http://www.ucdmc.ucdavis.edu/publish/news/cvc/7104

Self-Assembled Nanoparticle for chemotherapy

Excitement around the potential for targeted nanoparticles (NPs) that can be controlled by stimulus outside of the body for cancer therapy has been growing over the past few years. More specifically, there has been considerable attention around near-infrared NIR light as an ideal method to stimulate nanoparticles from outside the body. NIR is minimally absorbed by skin and tissue, has the ability to penetrate deep tissue in a noninvasive way and the energy from NIR light can be converted to heat by gold nanomaterials for effective thermal ablation of diseased tissue.

In new research from Brigham and Women’s Hospital (BWH), researchers describe the design and effectiveness of a first-of-its-kind, self assembled, multi-functional, NIR responsive gold nanorods that can deliver a chemotherapy drug specifically targeted to cancer cells and selectively release the drug in response to an external beam of light while creating heat for synergistic thermo-chemo mediated anti-tumor efficacy. The study is electronically published in Angewandte Chemie International Edition.

Source: http://www.brighamandwomens.org

Breakthrough In Prostate Cancer Treatment

Currently, large doses of chemotherapy are required when treating certain forms of cancer, resulting in toxic side effects. The chemicals enter the body and work to destroy or shrink the tumor, but also harm vital organs and drastically affect bodily functions. Now, scientists at the University of Missouri have proven that a new form of prostate cancer treatment that uses radioactive gold nanoparticles, and was developed at MU, is safe to use in dogs. Sandra Axiak-Bechtel , an assistant professor in oncology at the MU College of Veterinary Medicine , says that this is a big step for gold nanoparticle research.

Proving that gold nanoparticles are safe to use in the treatment of prostate cancer in dogs is a big step toward gaining approval for clinical trials in men,” Axiak-Bechtel said. “Dogs develop prostate cancer naturally in a very similar way as humans, so the gold nanoparticle treatment has a great chance to translate well to human patients.”

Source:

http://munews.missouri.edu/news-releases/2012/1015-gold-nanoparticle-prostate-cancer-treatment-found-safe-in-dogs-mu-study-shows/

How Double-Strands RNA Is Remodeled Inside Cells?

Molecular biologists at The University of Texas at Austin have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states. The discovery will have great implications for treating cancer and viruses in humans. They use chemical energy to clamp down and pry open RNA strands, thereby enabling the formation of new structures. This remodeling of RNA is essential to the basic functioning of cells.

If you want to couple fuel energy to mechanical work to drive strand separation, this is a very versatile mechanism,” said co-author Alan Lambowitz, the Nancy Lee and Perry R. Bass Regents Chair in Molecular Biology in the College of Natural Sciences and director of the Institute for Cellular and Molecular Biology. “These findings could have far-reaching implications for our ability to control the activities of proteins in this class when their functions go awry in disease states,” comments Michael Bender, program director in the Division of Genetics and Developmental Biology at the National Institutes of Health, which partially funded the work.
Source: http://web5.cns.utexas.edu/news/2012/09/ancient-enzymes-function-like-nanopistons-to-unwind-rna/