A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.

Source: http://www.wired.co.uk/

How An Implant Could Help Humans With Spinal Cord Injury To Walk Again

This rhesus monkey has a partial spinal cord lesion, which paralysed its right leg. But a neuroprosthetic implant has allowed the primate to walk again. The brain-to-spine interface decodes motor intention from brain signals, then relays this to the spinal cord, bypassing the injury. Small electrical pulses stimulate neural pathways to trigger specific muscles on the legs – restoring locomotion in real-time.

paralized-primate-walks-againCLICK ON THE IMAGE TO ENJOY THE VIDEO

We inserted one of the electrodes in the small region of the cortex that controls the leg. And send the information from all the neurone we recorded to a computer that decoded the motor intention of the primates based on this signal. This means the extension or flexion movement of the leg. And the computer then sends this information to the implantable stimulator that has the capacity to deliver stimulation at the correct location with the correct timing in order to reproduce the intended extension or flexion movement of the leg“, says Grégoire Courtine, a neuroscientist at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

The research was led by the Swiss Federal Institute of Technology, alongside international collaborators. Other neuroprosthetics have previously given amputees basic control over prosthetics. And in 2012 the team here were able to stimulate a paralysed rat’s muscles to help it walk. This development takes spinal cord stimulation to a new level.

To make the link between the decoding of the brain and the stimulation of the spinal cord, and to make this communication exist – this is completely new“, comments Jocelyne Bloch, neurosurgeon at the Lausanne University Hospital (CHUV).  A clinical study is now underway in Switzerland to access the feasibility of the implant in helping humans with spinal cord injury.

The research is published in the scientific journal Nature.

Source: http://actu.epfl.ch/

How To Follow Nanoparticles In The Body

Treating a disease without causing side effects is one of the big promises of nanoparticle technology. But fulfilling it remains a challenge. One of the obstacles is that researchers have a hard time seeing where nanoparticles go once they’re inside various parts of the body. But now one team has developed a way to help overcome this problem — by making tissues and organs clearer in the lab. Their study on mice appears in the journal ACS Nano.

3D mapping of nanoparticle

Scientists are trying to design nanoparticles that deliver a therapeutic cargo directly to a disease site. This specific targeting could help avoid the nasty side effects that patients feel when a drug goes to heathy areas in the body. But barriers, such as blood vessel walls, can divert particles from reaching their intended destination. To get around such obstacles, scientists need a better understanding of how nanoparticles interact with structures inside the body. Current techniques, however, are limited. Warren C. W. Chan and colleagues from the University of Toronto  (Canada) wanted to develop a method to better track where nanoparticles go within tissues.

The researchers injected an acrylamide hydrogel into organs and tissues removed from mice. The gel linked all of the molecules together, except for the lipids, which are responsible for making tissues appear opaque. The lipids easily washed away, leaving the tissues clear but otherwise intact. Using this technique, the researchers could image nanoparticles at a depth of more than 1 millimeter, which is 25 times deeper than existing methods. In addition to helping scientists understand how nanoparticles interact with tumors and organs, the new approach could also contribute to tissue engineering, implant and biosensor applications, say the researchers.

Source: http://inbs.med.utoronto.ca/

Brain Implant Moves Paralyzed Arm

This is Ian Burkhart of Ohio. His hands and legs were permanently paralyzed in a diving accident when he was 19 years old. But now with the help of a new, breakthrough computer chip implanted in his brain – the, now, 24-year-old is playing guitar hero.

brain implant helps paralized limbsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When we first hooked everything up, you know for the first time being able to move my hand, it was a big shock because you know it was something that I have not moved in three and half years at that point, now it’s more of something where I expect it to move“,  says  Ian Burkhat, the quadriplegic patient at Ohio State University Wexner Medical Center.  The small pea-sized computer chip relays signals from Burkhart’s brain through 130 electrodes to his forearm, allowing his mind guide his hands and fingers, bypassing his damaged spinal cord. On Wednesday, scientists and neurosurgeons describing this quadriplegic’s accomplishments as a milestone in the evolution of brain-computer interface technology.

This really provides hope, we believe, for many patients in the future as this technology evolves and matures“, comments Doctor Ali Rezai, from the Ohio State’s Center for NeuroModulation. Burkhart says the progress is moving along faster than he imagined: “The biggest dream would be to get full function of my hand back, both my hands, because that would allow you to be much more independent, not to have to rely on people for simple day to day tasks that you take for granted.”

Scientists are working to improve the technology, which for now can only be used in the laboratory, and move toward a wireless system bringing Burkhart another step closer to his dream.

Source: http://wexnermedical.osu.edu/

Bionic Human

A new  program from the Defense Advanced Research Project Agency (DARPA) aims to develop an implantable neural interface able to provide unprecedented signal resolution and data-transfer bandwidth between the human brain and the digital world. The interface would serve as a translator, converting between the electrochemical language used by neurons in the brain and the ones and zeros that constitute the language of information technology. The goal is to achieve this communications link in a biocompatible device no larger than one cubic centimeter in size, roughly the volume of two nickels stacked back to back.

The program, Neural Engineering System Design (NESD), stands to dramatically enhance research capabilities in neurotechnology and provide a foundation for new therapies.

artificial intelligence

Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” said Phillip Alvelda, the NESD program manager. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

To familiarize potential participants with the technical objectives of NESD, DARPA will host a Proposers Day meeting that runs Tuesday and Wednesday, February 2-3, 2016, in Arlington, Va. The Special Notice announcing the Proposers Day meeting is available at https://www.fbo.gov/.
More details about the Industry Group that will support NESD is available at https://www.fbo.gov/.
A Broad Agency Announcement describing the specific capabilities sought is available at: http://go.usa.gov/.

Source: http://www.darpa.mil/

Bionic Eye Against Loss Of Vision

Surgeons in Manchester have performed the first bionic eye implant in a patient with the most common cause of sight loss in the developed world. Ray Flynn, 80, has dry age-related macular degeneration which has led to the total loss of his central vision. He is using a retinal implant which converts video images from a miniature video camera worn on his glasses.

central vision loss

He can now make out the direction of white lines on a computer screen using the retinal implant. Mr Flynn said he was “delighted” with the implant and hoped in time it would improve his vision sufficiently to help him with day-to-day tasks like gardening and shopping.

CLICK to enjoy the video

 

bionic_eye

 

The bionic eye implant receives its visual information from a miniature camera mounted on glasses worn by the patient. The images are converted into electrical pulses and transmitted wirelessly to an array of electrodes attached to the retina. The electrodes stimulate the remaining retina’s remaining cells which send the information to the brain.

 

Source: http://www.bbc.com/

How To Wireless Control Neurons

National Institutes of Health (NIH)-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.

A study showed that scientists can wirelessly determine the path a mouse walks with a press of a button. Researchers at the Washington University School of Medicine, St. Louis, and University of Illinois, Urbana-Champaign, created a remote controlled, next-generation tissue implant that allows neuroscientists to inject drugs and shine lights on neurons deep inside the brains of mice. The revolutionary device is described online in the journal Cell. Its development was partially funded by the National Institutes of Health.

brain implantScientists used soft materials to create a brain implant a tenth the width of a human hair that can wirelessly control neurons with lights and drugs.
“It unplugs a world of possibilities for scientists to learn how brain circuits work in a more natural setting.” said Michael R. Bruchas, Ph.D., associate professor of anesthesiology and neurobiology at Washington University School of Medicine and a senior author of the study.

The Bruchas lab studies circuits that control a variety of disorders including stress, depression, addiction, and pain. Typically, scientists who study these circuits have to choose between injecting drugs through bulky metal tubes and delivering lights through fiber optic cables. Both options require surgery that can damage parts of the brain and introduce experimental conditions that hinder animals’ natural movements.

To address these issues, Jae-Woong Jeong, Ph.D., a bioengineer formerly at the University of Illinois at Urbana-Champaign, worked with Jordan G. McCall, Ph.D., a graduate student in the Bruchas lab, to construct a remote controlled, optofluidic implant. The device is made out of soft materials that are a tenth the diameter of a human hair and can simultaneously deliver drugs and lights.

“We used powerful nano-manufacturing strategies to fabricate an implant that lets us penetrate deep inside the brain with minimal damage,” said John A. Rogers, Ph.D., professor of materials science and engineering, University of Illinois at Urbana-Champaign and a senior author. “Ultra-miniaturized devices like this have tremendous potential for science and medicine.”

Source: http://www.nih.gov/

How To Heal Apnea Without Using Mask

Sufferers of Obstructive Sleep Apnea (OSA) as well as heavy snorers can now look forward to greater relief and a better quality of life. In order to heal apnea, the Belgian-israeli company Nyxoah is developing a neurostimulation device like no other on the market. Not only will it allow people with OSA to enjoy a full night’s comfortable sleep. It will also achieve this result with a tiny implant that’s minimally invasive, long-lasting and inserted on an outpatient basis. Medical studies have identified Neurostimulation (activating the nerves of the tongue muscles) as being a very promising alternative to CPAP, oral appliances and even the need for surgery. But until now many technical difficulties have surrounded Neurostimulation solutions.


How can the Neurostimulator be made tiny and easily implanted? How can the procedure be done rapidly and without special surgical skills? How can the implant be powered for maximum comfort and minimum inconvenience?

The Nyxoah implant is an ultra-small Neurostimulator, measuring 20mm in diameter and 2.5mm thick. It’s designed to be implanted close to the nerves of the tongue muscle by a single small incision. Since the implant is lodged within its own special delivery tool, surgeons will find it easy and convenient to correctly place it at the right location.
A single surgeon can perform the placement procedure and do so in 15 minutes (compared to implants from other Neurostimulation companies that can take over 3 hours to implant).
The benefits with the Nyxoah solution are not only a shorter and less risky procedure but also far lower surgical expenses.
Note that once placed, the implant does not migrate (move to a different position). It will have a lifetime of at least 12 years, compared to other implants that need replacement after 5 years and therefore require further surgery.

Source: http://www.nyxoah.com/

SMILE!

A brighter, better, longer-lasting dental implant may soon be on its way to your dentist’s office. Dental implants are posts, usually made of titanium, that are surgically placed into the jawbone and topped with artificial teeth. More than dentures or bridges, implants mimic the look and feel of natural teeth. While most dental implants are successful, a small percentage fail and either fall out or must be removed. A scientist at Michigan Technological University wants to lower that rate to zero using nanotechnology.
smiling-girl
“Dental implants can greatly improve the lives of people who need them,” said Tolou Shokuhfar, an assistant professor of mechanical engineering. “But there are two main issues that concern dentists: infection and separation from the bone.

The mouth is a dirty place, so bacterial infections are a risk after implant surgery, and sometimes bone fails to heal securely around the device. Because jawbones are somewhat thin and delicate, replacing a failed implant can be difficult, not to mention expensive. Generally, dentists charge between $2,000 and $4,000 to install a single implant, and the procedure is rarely covered by insurance. Enter a nano-material that can battle infection, improve healing, and help dental implants last a lifetime: titanium dioxide nanotubes.

Source: http://www.eurekalert.org/
AND
http://www.mtu.edu/