In 2025 Humanity Could Benefit From A Major New Source Of Clean Power

An international project to generate energy from nuclear fusion has reached a key milestone, with half of the infrastructure required now built. Bernard Bigot, the director-general of the International Thermonuclear Experimental Reactor (Iter), the main facility of which is based in southern France, said the completion of half of the project meant the effort was back on track, after a series of difficulties. This would mean that power could be produced from the experimental site from 2025.

Nuclear fusion occurs when two atoms combine to form a new atom and a neutron. The atoms are fired into a plasma where extreme temperatures overcome their repulsion and forces them together. The fusion releases about four times the energy produced when an atom is split in conventional nuclear fission

The effort to bring nuclear fusion power closer to operation is backed by some of the world’s biggest developed and emerging economies, including the EU, the US, China, India, Japan, Korea and Russia. However, a review of the long-running project in 2013 found problems with its running and organisation. This led to the appointment of Bigot, and a reorganisation that subsequent reviews have broadly endorsed.

Fusion power is one of the most sought-after technological goals in the pursuit of clean energy. Nuclear fusion is the natural phenomenon that powers the sun, converting hydrogen into helium atoms through a process that occurs at extreme temperatures.

Replicating that process on earth at sufficient scale could unleash more energy than is likely to be needed by humanity, but the problem is creating the extreme conditions necessary for such reactions to occur, harnessing the resulting energy in a useful way, and controlling the reactions once they have been induced.

The Iter project aims to use hydrogen fusion, controlled by large superconducting magnets, to produce massive heat energy which would drive turbines – in a similar way to the coal-fired and gas-fired power stations of today – that would produce electricity. This would produce power free from carbon emissions, and potentially at low cost, if the technology can be made to work at a large scale.

For instance, according to Iter scientists, an amount of hydrogen the size of a pineapple could be used to produce as much energy as 10,000 tonnes of coal.