Hydrogen Economy Closer

Washington State University (WSU) researchers have found a way to more efficiently generate hydrogen from water — an important key to making clean energy more viable. Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality catalyst required for the chemical reaction to split water.

Energy conversion and storage is a key to the clean energy economy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewable energy is to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell carsIndustries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required – usually platinum or ruthenium. Many of the methods to split water also require too much energy, or the required catalyst materials break down too quickly.

In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test.

We took a very simple approach that could be used easily in large-scale production,” said Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing. “The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts,” comments Junhua Song, another WSU Ph.D. student who worked on the catalyst characterization.

The findings are described in the journal Nano Energy.

Source: https://news.wsu.edu/

Making Fuel Cells for a Fraction of the Cost

It is the third announcement in less than one week for a major improvment in the making of fuel cells.

In the competition between Lithium-Ion batteries (e.g. Tesla cars), and hydrogen fuel cells (see picture of Nexo from Hyundai) that power electric cars, it is difficult to predict which one will be the winner at the end.

Fuel cells have the potential to be a clean and efficient way to run cars, computers, and power stations, but the cost of producing them is limiting their use. That’s because a key component of the most common fuel cells is a catalyst made from the precious metal platinum.

In a paper published in Small, researchers at the University of California, Riverside (UCR), describe the development of an inexpensive, efficient catalyst material for a type of fuel cell called a polymer electrolyte membrane fuel cell (PEMFC), which turns the chemical energy of hydrogen into electricity and is among the most promising fuel cell types to power cars and electronics.

The catalyst developed at UCR is made of porous carbon nanofibers embedded with a compound made from a relatively abundant metal such as cobalt, which is more than 100 times less expensive than platinum. The research was led by David Kisailus, the Winston Chung Endowed Professor in Energy Innovation in UCR’s Marlan and Rosemary Bourns College of Engineering.

Fuel cells, which are already being used by some carmakers, offer advantages over conventional combustion technologies, including higher efficiency, quieter operation and lower emissions. Hydrogen fuel cells emit only water.

Like batteries, fuel cells are electrochemical devices that comprise a positive and negative electrode sandwiching an electrolyte. When a hydrogen fuel is injected onto the anode, a catalyst separates the hydrogen molecules into positively charged particles called protons and negatively charged particles called electrons. The electrons are directed through an external circuit, where they do useful work, such as powering an electric motor, before rejoining the positively charged hydrogen ions and oxygen to form water.

A critical barrier to fuel cell adoption is the cost of platinum, making the development of alternative catalyst materials a key driver for their mass implementation.

Using a technique called electrospinning, the UCR researchers made paper-thin sheets of carbon nanofibers that contained metal ions — either cobalt, iron or nickel. Kisailus and his team, collaborating with scientists at Stanford University, determined that the new materials performed as good as the industry standard platinum-carbon systems, but at a fraction of the cost. “The key to the high performance of the materials we created is the combination of the chemistry and fiber processing conditions,” Kisailus said

Source: https://ucrtoday.ucr.edu/

How To Use Computers Heat To Generate Electricity

Electronic devices such as computers generate heat that mostly goes to waste. Physicists at Bielefeld University (Germany) have found a way to use this energy: They apply the heat to generate magnetic signals known as ‘spin currents’. In future, these signals could replace some of the electrical current in electronic components. In a new study, the physicists tested which materials can generate this spin current most effectively from heat. The research was carried out in cooperation with colleagues from the University of Greifswald, Gießen University, and the Leibniz Institute for Solid State and Materials Research in Dresden.

The Bielefeld physicists are working on the basic principles for making data processing more effective and energy-efficient in the young field of ‘spin caloritronics’. They are members of the ‘Thin Films & Physics of Nanostructures’ research group headed by Professor Dr. Günter Reiss. Their new study determines the strength of the spin current for various combinations of thin films.

A spin current is produced by differences in temperature between two ends of an electronic component. These components are extremely small and only one millionth of a millimetre thick. Because they are composed of magnetic materials such as iron, cobalt, or nickel, they are called magnetic nanostructures.

The physicists take two such nanofilms and place a layer of metal oxide between them that is only a few atoms thick. They heat up one of the external films – for example, with a hot nanowire or a focused laser. Electrons with a specific spin orientation then pass through the metal oxide. This produces the spin current. A spin can be conceived as electrons spinning on their own axes – either clockwise or anti-clockwise.

Their findings have been  published  in the research journal ‘Nature Communications’.

Source: https://ekvv.uni-bielefeld.de/

Cheap, Robust Catalyst Splits Water Into Hydrogen And Oxygen

Splitting water into hydrogen and oxygen to produce clean energy can be simplified with a single catalyst developed by scientists at Rice University and the University of Houston. The electrolytic film produced at Rice and tested at Houston is a three-layer structure of nickel, graphene and a compound of iron, manganese and phosphorus. The foamy nickel gives the film a large surface, the conductive graphene protects the nickel from degrading and the metal phosphide carries out the reactionRice chemist Kenton Whitmire and Houston electrical and computer engineer Jiming Bao and their labs developed the film to overcome barriers that usually make a catalyst good for producing either oxygen or hydrogen, but not both simultaneously.

A catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals like platinum. This electron microscope image shows nickel foam coated with graphene and then the catalytic surface of iron, manganese and phosphorus

Regular metals sometimes oxidize during catalysis,” Whitmire said. “Normally, a hydrogen evolution reaction is done in acid and an oxygen evolution reaction is done in base. We have one material that is stable whether it’s in an acidic or basic solution.

The discovery builds upon the researchers’ creation of a simple oxygen-evolution catalyst revealed earlier this year. In that work, the team grew a catalyst directly on a semiconducting nanorod array that turned sunlight into energy for solar water splittingElectrocatalysis requires two catalysts, a cathode and an anode. When placed in water and charged, hydrogen will form at one electrode and oxygen at the other, and these gases are captured. But the process generally requires costly metals to operate as efficiently as the Rice team’s catalyst.

The standard for hydrogen evolution is platinum,” Whitmire explained. “We’re using Earth-abundant materials — iron, manganese and phosphorus — as opposed to noble metals that are much more expensive.

The robust material is the subject of a paper in Nano Energy.

Source: http://news.rice.edu/

Clean Renewable Source Of Hydrogen Fuel For Electric Car

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the form of hydrogen and oxygen.

anode RiceA photo shows an array of titanium dioxide nanorods with an even coating of an iron, manganese and phosphorus catalyst. The combination developed by scientists at Rice University and the University of Houston is a highly efficient photoanode for artificial photosynthesis. Click on the image for a larger version

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight. An oxygen-evolution  catalyst splits water into hydrogen and oxygen. Finding a clean renewable source of hydrogen fuel is the focus of extensive research, but the technology has not yet been commercialized.

The Rice team came up with a way to combine three of the most abundant metalsiron, manganese and phosphorus — into a precursor that can be deposited directly onto any substrate without damaging it. To demonstrate the material, the lab placed the precursor into its custom chemical vapor deposition (CVD) furnace and used it to coat an array of light-absorbing, semiconducting titanium dioxide nanorods. The combined material, called a photoanode, showed excellent stability while reaching a current density of 10 milliamps per square centimeter, the researchers reported.

The results appear in two new studies. The first, on the creation of the films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.

Source: http://news.rice.edu/

How To Turn CO2 Into Rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphereturn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.


Measures to tackle the problem of increasing greenhouse gas emissions and resultant climate change are numerous. One approach is Carbon Capture and Storage (CCS), where CO2 is physically removed from the atmosphere and trapped underground. Geoengineers have long explored the possibility of sealing CO2 gas in voids underground, such as in abandoned oil and gas reservoirs, but these are susceptible to leakage. So attention has now turned to the mineralisation of carbon to permanently dispose of CO2.

Until now it was thought that this process would take several hundreds to thousands of years and is therefore not a practical option. But the current study – led by Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy – has demonstrated that it can take as little as two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says: “Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” adds Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.

Storing CO2 as carbonate minerals significantly enhances storage security which should improve public acceptance of Carbon Capture and Storage as a climate change mitigation technology,” says Dr Matter. “The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”

Source: http://www.southampton.ac.uk/