Paper Supercapacitor

By coating ordinary paper with layers of gold nanoparticles and other materials, researchers have fabricated flexible paper supercapacitors that exhibit the best performance of any textile-type supercapacitor to date. In particular, the paper supercapacitors address one of the biggest challenges in this area, which is to achieve a high energy density in addition to an already high power density, since both properties are essential for realizing high-performance energy-storage devices. In the future, flexible paper supercapacitors could be used in wearable electronics for biomedical, consumer, and military applications. The researchers, led by Seung Woo Lee at the Georgia Institute of Technology and Jinhan Cho at Korea University, have published a paper on the flexible paper supercapacitor electrodes in a recent issue of Nature Communications. As energy-storage devices, supercapacitors have several advantages over batteries, such as a higher power density, rapid charge/discharge rate, and longer lifetime, yet they lag behind batteries in energy density (the amount of energy that can be stored in a given amount of space). Although several methods have been attempted to improve the energy density of paper supercapacitors by coating them with various conductive materials, often these methods have the drawback of reducing the power density.

The paper electrodes based on layer-by-layer-assembled metal nanoparticles exhibit metal-like electric conductivity, paper-like mechanical properties, and a large surface area without any thermal treatment and/or mechanical pressing,” explains coauthor Yongmin Ko at Korea University. “The periodic insertion of metal nanoparticles within high-energy nanoparticle-based paper electrodes could resolve the critical tradeoff in which an increase in the loading amount of materials to enhance the energy density of supercapacitors decreases the power density.”
Tests  showed that the flexible paper supercapacitors had a maximum capacitance that is higher than any previously reported textile-based supercapacitor. In addition, the new devices exhibits an excellent capacity retention, demonstrated by a 90% capacity retention after 5,000 bending cycles.

Source: http://me.gatech.edu/

Supersonic spray delivers high-quality graphene layer

A simple, inexpensive spray method that deposits a graphene film can heal manufacturing defects and produce a high-quality graphene layer on a range of substrates, report researchers at the University of Illinois at Chicago (UIC and Korea UniversityGraphene, a two-dimensional wonder-material composed of a single layer of carbon atoms, is strong, transparent, and an excellent conductor of electricity. It has potential in a wide range of applications, such as reinforcing and lending electrical properties to plastics; creating denser and faster integrated circuits; and building better touch screens.

Although the potential uses for graphene seem limitless, there has been no easy way to scale up from microscopic to large-scale applications without introducing defects, says Alexander Yarin, UIC professor of mechanical and industrial engineering and co-principal investigator on the study.

graphene-spray

Normally, graphene is produced in small flakes, and even these small flakes have defects,” Yarin said. Worse, when you try to deposit them onto a large-scale area, defects increase, and graphene’s useful properties — its “magic” — are lost, he said.

Yarin first turned to solving how to deposit graphene flakes to form a consistent layer without any clumps or spaces. He went to Sam S. Yoon, professor of mechanical engineering at Korea University and co-principal investigator on the study. Yoon had been working with a unique kinetic spray deposition system that exploits the supersonic acceleration of droplets through a Laval nozzle. Although Yoon was working with different materials, Yarin believed his method might be used to deposit graphene flakes into a smooth layer.

Their supersonic spray system produces very small droplets of graphene suspension, which disperse evenly, evaporate rapidly, and reduce the tendency of the graphene flakes to aggregate. But to the researchers’ surprise, defects inherent in the flakes themselves disappeared, as a by-product of the spray method. The result was a higher quality graphene layer. The energy of the impact stretches the graphene and restructures the arrangement of its carbon atoms into the perfect hexagons of flawless graphene.

Imagine something like Silly Putty hitting a wall — it stretches out and spreads smoothly,” said Yarin. “That’s what we believe happens with these graphene flakes. They hit with enormous kinetic energy, and stretch in all directions. “We’re tapping into graphene’s plasticity — it’s actually restructuring.”

Their study is available online in the journal Advanced Functional Materials.

Source: https://news.uic.edu/