Rapid, Cheap Liver Cancer Test

University of Utah researchers say they are designing a diagnostic method that will be able to accurately identify signs of liver cancer within minutes, saving critical time for patients of the stealthy disease. The new type of test could forever change how people screen for the disease, said Marc Porter, a U. chemical engineering and chemistry professor who is leading the research along with Dr. Courtney Scaife, a surgeon who both practices and teaches surgery for the university. Porter said the long-term vision is for the tool itself to become as automatic and portable as a pregnancy test, though additional technology — called a spectrometer — is currently needed to precisely measure the results of the test.

A small domino-sized cartridge holds a membrane for a new field test for liver cancer developed by researchers from the University of Utah. The test doesn’t involve sending a specimen to a blood lab and cuts the wait time for results from two weeks to two minutes. It can be administered wherever the patient is, which will be valuable for developing nations with little access to hospitals.

It’s really compact, it’s simple and low cost,” he said of the test kit.

Liver cancer is difficult to survive because typically it is highly developed by the time symptoms show up, Porter said. It is the second deadliest form of cancer worldwide, resulting in about 788,000 deaths in 2015, according to the World Health Organization. “All too often, the cancer is diagnosed past when you can actually have surgical intervention,” Porter said.

Currently, a blood test taken to determine the presence of liver cancer is usually sent to a lab offsite, where it takes days or even up to two weeks to test and return, said Vincent Horiuchi, spokesman for the U.’s College of Engineering. Those days are precious time that is lost in the fight against the disease, he said.

Source: https://unews.utah.edu/

Nanoparticles Eradicate PreCancerous Cells In The Liver

According to the American Cancer Society, more than 700,000 new cases of liver cancer are diagnosed worldwide each year. Currently, the only cure for the disease is to surgically remove the cancerous part of the liver or transplant the entire organ. However, an international study led by University of Missouri (MU) – School of Medicine  researchers has proven that a new minimally invasive approach targets and destroys precancerous tumor cells in the livers of mice and invitro human cells.

liver cancer

The limitations when treating most forms of cancer involve collateral damage to healthy cells near tumor sites,” said Kattesh Katti, PhD, Curators’ Professor of Radiology and Physics at the MU School of Medicine and lead author of the study. “For more than a decade we have studied the use of nanotechnology to test whether targeted treatments would reduce or eliminate damage to nearby healthy cells. Of particular interest has been the use of green nanotechnology approaches pioneered here at MU that use natural chemical compounds from plants.”

The study was conducted in the United States and Egypt, and it involved the use of gold nanoparticles encapsulated by a protective stabilizer called gum Arabic. The nanoparticles were introduced to the livers of mice intravenously and were heated with a laser through a process known as photothermal therapy.

Gum Arabic is a natural gum made of the hardened sap from acacia trees,” said Katti, who also serves as director of the MU Institute of Green Nanotechnology and Professor of Medical Research at the MU School of Medicine. “It is FDA-approved for human consumption and is primarily used in the food industry as an additive. It also promotes adhesion of gold nanoparticles engineered to attract to precancerous and malignant cells – which are much more susceptible to lower levels of heat than healthy cells. Once the nanoparticles travel and adhere to cancerous cells, they are heated to a temperature that destroys them but leaves healthy tissue unaffected.”

Katti’s team studied a total of 224 mice. Half were identified as having precancerous cells in their livers. The other half had normal liver tissue. Outside of the control group, the mice received either an intravenous injection of gum Arabic alone or gum Arabic-encapsulated gold nanoparticles with or without laser therapy.

The administration of gum Arabic, gold nanoparticles and photothermal therapy caused no change to healthy tissue, which confirmed the safe use of these treatments,” Katti said. “However, the use of gum Arabic-encapsulated nanoparticles combined with photothermal therapy resulted in the targeted eradication of the precancerous cells and their genetic code in both our mice model and the human invitro cell model we developed for this study.”

Source: http://medicine.missouri.edu/

New Cancer Treatment Could Eliminate Lung Metastases

A team of investigators from Houston Methodist Research Institute may have transformed the treatment of metastatic triple negative breast cancer by creating the first drug to successfully eliminate lung metastases in mice.
The majority of cancer deaths are due to metastases to the lung and liver, yet there is no cure. Existing cancer drugs provide limited benefit due to their inability to overcome biological barriers in the body and reach the cancer cells in sufficient concentrations. Houston Methodist nanotechnology and cancer researchers have solved this problem by developing a drug that generates nanoparticles inside the lung metastases in mice.
In this study, 50 percent of the mice treated with the drug had no trace of metastatic disease after eight months. That’s equivalent to about 24 years of long-term survival following metastatic disease for humans.

Due to the body’s own defense mechanisms, most cancer drugs are absorbed into healthy tissue causing negative side effects, and only a fraction of the administered drug actually reaches the tumor, making it less effective, said Mauro Ferrari, Ph.D, president and CEO of the Houston Methodist Research Institute. This new treatment strategy enables sequential passage of the biological barriers to transport the killing agent into the heart of the cancer. The active drug is only released inside the nucleus of the metastatic disease cell, avoiding the multidrug resistance mechanism of the cancer cells. This strategy effectively kills the tumor and provides significant therapeutic benefit in all mice, including long-term survival in half of the animals.

cancer treatment by injection

This may sound like science fiction, like we’ve penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do,” said Ferrari.

The research has been published in Nature Biotechnology .

Source: http://houstonmethodist.org/

Nanoflowers Deliver Drugs To Cancer Cells

Biomedical engineering researchers have developed daisy-shaped, nanoscale structures that are made predominantly of anti-cancer drugs and are capable of introducing a “cocktail” of multiple drugs into cancer cells. The researchers are all part the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill.
To make the “nanodaisies,” the researchers begin with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands branching off to either side. Researchers directly link the anti-cancer drug camptothecin (CPT) onto the shorter strands and introduce the anti-cancer drug doxorubicin (Dox) into the solution. Once injected, the nanodaisies float through the bloodstream until they are absorbed by cancer cells. Once in a cancer cell, the drugs are released.

Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers
We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice,” says Dr. Zhen Gu, senior author of the paper. “And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian and brain cancers.”
Source: http://news.ncsu.edu/

RNA Silences Genes, Treats Cancer

RNA interference (RNAi), a technique that can turn off specific genes inside living cells, holds great potential for treating many diseases caused by malfunctioning genes. RNA, a nanoparticle, transfers information from DNA to protein-forming system of the cell. However, it has been difficult for scientists to find safe and effective ways to deliver gene-blocking RNA to the correct targets.
Up to this point, researchers have gotten the best results with RNAi targeted to diseases of the liver, in part because it is a natural destination for nanoparticles. But now, in a study appearing in the May 11 issue of Nature Nanotechnology, an MIT-led team reports achieving the most potent RNAi gene silencing to date in nonliver tissues.
Using nanoparticles designed and screened for endothelial delivery of short strands of RNA called siRNA, the researchers were able to target RNAi to endothelial cells, which form the linings of most organs. This raises the possibility of using RNAi to treat many types of disease, including cancer and cardiovascular disease, the researchers say.

MIT engineers designed RNA-carrying nanoparticles (red) that can be taken up
There’s been a growing amount of excitement about delivery to the liver in particular, but in order to achieve the broad potential of RNAi therapeutics, it’s important that we be able to reach other parts of the body as well,” says Daniel Anderson, the Samuel A. Goldblith Associate Professor of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and one of the paper’s senior authors.
The paper’s other senior author is Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. Lead authors are MIT graduate student James Dahlman and Carmen Barnes of Alnylam Pharmaceuticals.

Source: http://newsoffice.mit.edu/