Skin Patches Melt Fat

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders, such as obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina. Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat—a process named browning—which can happen naturally when the body is exposed to cold temperatures—as a treatment for obesity and diabetes.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology & cell biology at Columbia. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter—too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

The findings, from experiments in mice, were published online today in ACS Nano.

Source: http://newsroom.cumc.columbia.edu/

Killing Cancer Cells From Inside

Researchers have witnessed – for the first time – cancer cells being targeted and destroyed from the inside, by an organo-metal compound discovered by the University of Warwick (UK). Professor Peter J. Sadler, and his group in the Department of Chemistry, have demonstrated that Organo-Osmium FY26 – which was first discovered at Warwick – kills cancer cells by locating and attacking their weakest part.

osmium compound fy26 in cancer cell
This is the first time that an Osmium-based compound – which is fifty times more active than the current cancer drug cisplatin – has been seen to target the disease. Using the European Synchrotron Radiation Facility (ESRF), researchers analysed the effects of Organo-Osmium FY26 in ovarian cancer cells – detecting emissions of X-ray fluorescent light to track the activity of the compound inside the cells

Looking at sections of cancer cells under nano-focus, it was possible to see an unprecedented level of minute detail. Organelles like mitochondria, which are the ‘powerhouses’ of cells and generate their energy, were detectable. In cancer cells, there are errors and mutations in the DNA of mitochondria, making them very weak and susceptible to attack.

FY26 was found to have positioned itself in the mitochondriaattacking and destroying the vital functions of cancer cells from within, at their weakest point. Researchers were also able to see natural metals which are produced by the body – such as zinc and calcium – moving around the cells. Calcium in particular is known to affect the function of cells, and it is thought that this naturally-produced metal helps FY26 to achieve an optimal position for attacking cancer.

Source: http://www2.warwick.ac.uk

One Molecule Plays David Against The Goliath Of Aging

Are pomegranates really the superfood we’ve been led to believe will counteract the aging process? Up to now, scientific proof has been fairly weak. And some controversial marketing tactics have led to skepticism as well. A team of scientists from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and the company Amazentis wanted to explore the issue by taking a closer look at the secrets of this plump pink fruit. They discovered that a molecule in pomegranates, transformed by microbes in the gut, enables muscle cells to protect themselves against one of the major causes of aging. In nematodes and rodents, the effect is nothing short of amazing. Human clinical trials are currently underway, but these initial findings have already been published in the journal Nature Medicine. 

pomegranates

As we age, our cells increasingly struggle to recycle their powerhouses. Called mitochondria, these inner compartments are no longer able to carry out their vital function, thus accumulate in the cell. This degradation affects the health of many tissues, including muscles, which gradually weaken over the years. A buildup of dysfunctional mitochondria is also suspected of playing a role in other diseases of aging, such as Parkinson’s disease.
The scientists identified a molecule that, all by itself, managed to re-establish the cell’s ability to recycle the components of the defective mitochondria: urolithin A. “It’s the only known molecule that can relaunch the mitochondrial clean-up process, otherwise known as mitophagy,” says Patrick Aebischer, co-author on the study. “It’s a completely natural substance, and its effect is powerful and measurable.”

The team started out by testing their hypothesis on the usual suspect: the nematode C. elegans. It’s a favorite test subject among aging experts, because after just 8-10 days it’s already considered elderly. The lifespan of worms exposed to urolithin A increased by more than 45% compared with the control group.

These initial encouraging results led the team to test the molecule on animals that have more in common with humans. In the rodent studies, like with C. elegans, a significant reduction in the number of mitochondria was observed, indicating that a robust cellular recycling process was taking place. Older mice, around two years of age, showed 42% better endurance while running than equally old mice in the control group.

According to study co-author Johan Auwerx, it would be surprising if urolithin A weren’t effective in humans. “Species that are evolutionarily quite distant, such as C elegans and the rat, react to the same substance in the same way. That’s a good indication that we’re touching here on an essential mechanism in living organisms.”

Urolithin A’s function is the product of tens of millions of years of parallel evolution between plants, bacteria and animals. According to Chris Rinsch, co-author and CEO of Amazentis, this evolutionary process explains the molecule’s effectiveness: “Precursors to urolithin A are found not only in pomegranates, but also in smaller amounts in many nuts and berries. Yet for it to be produced in our intestines, the bacteria must be able to break down what we’re eating. When, via digestion, a substance is produced that is of benefit to us, natural selection favors both the bacteria involved and their host. Our objective is to follow strict clinical validations, so that everyone can benefit from the result of these millions of years of evolution.”

Source; http://actu.epfl.ch/

 

Perfect Image Of Brain Synaptic System

The human brain contains more synapses than there are galaxies in the observable universe (to put a number on it, there are perhaps 100 trillion synapses versus 100 billion galaxies), and now scientists can see them all – individually. A new imaging tool promises to open the door to all sorts of new insights about the brain and how it works. The tool can generate images at a nanoscale resolution, which is small enough to see all cellular objects and many of their sub-cellular components (so for the biology-literate, that’s stuff like neurons and the synapses that permit them to fire, plus axons, dendrites, glia, mitochondria, blood vessel cells, and so on).

 

brain-imaging-tool-nanoscale-resolution-1

Developed by researchers at the Boston University School of Medicine and Harvard University, the imaging method employs an automated tape-collecting device equipped with a diamond knife to obtain ultra-thin brain sections, which are then scanned under an electron microscope. Different colors are used to identify different cellular objects using software developed by study co-author Daniel Berger.

To demonstrate their new tool the researchers peered inside the brain of an adult mouse. They imaged a very small piece of a mouse’s neocortex at a resolution that made individual synaptic vesicles visible (these are tiny spheres of less than 40 nm diameter that store neurotransmitters, or chemical signals, for release from a synapse into a “target” neuron). The specific area they imaged is involved in receiving sensory information from mouse whiskers, which are much more sensitive than human fingertips.

Source: http://www.cell.com/
AND
http://www.gizmag.com/