How To Store Data At The Molecular Level

From smartphones to nanocomputers or supercomputers, the growing need for smaller and more energy efficient devices has made higher density data storage one of the most important technological quests. Now scientists at the University of Manchester have proved that storing data with a class of molecules known as single-molecule magnets is more feasible than previously thought. The research, led by Dr David Mills and Dr Nicholas Chilton, from the School of Chemistry, is being published in Nature. It shows that magnetic hysteresis, a memory effect that is a prerequisite of any data storage, is possible in individual molecules at -213 °C. This is tantalisingly close to the temperature of liquid nitrogen (-196 °C).

The result means that data storage with single molecules could become a reality because the data servers could be cooled using relatively cheap liquid nitrogen at -196°C instead of far more expensive liquid helium (-269 °C). The research provides proof-of-concept that such technologies could be achievable in the near future.

The potential for molecular data storage is huge. To put it into a consumer context, molecular technologies could store more than 200 terabits of data per square inch – that’s 25,000 GB of information stored in something approximately the size of a 50p coin, compared to Apple’s latest iPhone 7 with a maximum storage of 256 GB.

Single-molecule magnets display a magnetic memory effect that is a requirement of any data storage and molecules containing lanthanide atoms have exhibited this phenomenon at the highest temperatures to date. Lanthanides are rare earth metals used in all forms of everyday electronic devices such as smartphones, tablets and laptops. The team achieved their results using the lanthanide element dysprosium.

This is very exciting as magnetic hysteresis in single molecules implies the ability for binary data storage. Using single molecules for data storage could theoretically give 100 times higher data density than current technologies. Here we are approaching the temperature of liquid nitrogen, which would mean data storage in single molecules becomes much more viable from an economic point of view,’ explains Dr Chilton.

The practical applications of molecular-level data storage could lead to much smaller hard drives that require less energy, meaning data centres across the globe could become a lot more energy efficient.

Source: http://www.manchester.ac.uk/

NonCarbon SuperCapacitor Produces More Power

Energy storage devices called supercapacitors have become a hot area of research, in part because they can be charged rapidly and deliver intense bursts of power. However, all supercapacitors currently use components made of carbon, which require high temperatures and harsh chemicals to produce. Now researchers at MIT and elsewhere have for the first time developed a supercapacitor that uses no conductive carbon at all, and that could potentially produce more power than existing versions of this technology.

mit-supercapacitor

We’ve found an entirely new class of materials for supercapacitors,” Dincă says.

Dincă and his team have been exploring for years a class of materials called metal-organic frameworks, or MOFs, which are extremely porous, sponge-like structures. These materials have an extraordinarily large surface area for their size, much greater than the carbon materials do. That is an essential characteristic for supercapacitors, whose performance depends on their surface area. But MOFs have a major drawback for such applications: They are not very electrically conductive, which is also an essential property for a material used in a capacitor.

One of our long-term goals was to make these materials electrically conductive,” Dincă says, even though doing so “was thought to be extremely difficult, if not impossible.” But the material did exhibit another needed characteristic for such electrodes, which is that it conducts ions (atoms or molecules that carry a net electric charge) very well.

All double-layer supercapacitors today are made from carbon,” Dincă says. “They use carbon nanotubes, graphene, activated carbon, all shapes and forms, but nothing else besides carbon. So this is the first noncarbon, electrical double-layer supercapacitor.”

The team’s findings are being reported in the journal Nature Materials, in a paper by Mircea Dincă, an MIT associate professor of chemistry; Yang Shao-Horn, the W.M. Keck Professor of Energy; and four others.

Source: http://news.mit.edu/

One Molecule Plays David Against The Goliath Of Aging

Are pomegranates really the superfood we’ve been led to believe will counteract the aging process? Up to now, scientific proof has been fairly weak. And some controversial marketing tactics have led to skepticism as well. A team of scientists from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and the company Amazentis wanted to explore the issue by taking a closer look at the secrets of this plump pink fruit. They discovered that a molecule in pomegranates, transformed by microbes in the gut, enables muscle cells to protect themselves against one of the major causes of aging. In nematodes and rodents, the effect is nothing short of amazing. Human clinical trials are currently underway, but these initial findings have already been published in the journal Nature Medicine. 

pomegranates

As we age, our cells increasingly struggle to recycle their powerhouses. Called mitochondria, these inner compartments are no longer able to carry out their vital function, thus accumulate in the cell. This degradation affects the health of many tissues, including muscles, which gradually weaken over the years. A buildup of dysfunctional mitochondria is also suspected of playing a role in other diseases of aging, such as Parkinson’s disease.
The scientists identified a molecule that, all by itself, managed to re-establish the cell’s ability to recycle the components of the defective mitochondria: urolithin A. “It’s the only known molecule that can relaunch the mitochondrial clean-up process, otherwise known as mitophagy,” says Patrick Aebischer, co-author on the study. “It’s a completely natural substance, and its effect is powerful and measurable.”

The team started out by testing their hypothesis on the usual suspect: the nematode C. elegans. It’s a favorite test subject among aging experts, because after just 8-10 days it’s already considered elderly. The lifespan of worms exposed to urolithin A increased by more than 45% compared with the control group.

These initial encouraging results led the team to test the molecule on animals that have more in common with humans. In the rodent studies, like with C. elegans, a significant reduction in the number of mitochondria was observed, indicating that a robust cellular recycling process was taking place. Older mice, around two years of age, showed 42% better endurance while running than equally old mice in the control group.

According to study co-author Johan Auwerx, it would be surprising if urolithin A weren’t effective in humans. “Species that are evolutionarily quite distant, such as C elegans and the rat, react to the same substance in the same way. That’s a good indication that we’re touching here on an essential mechanism in living organisms.”

Urolithin A’s function is the product of tens of millions of years of parallel evolution between plants, bacteria and animals. According to Chris Rinsch, co-author and CEO of Amazentis, this evolutionary process explains the molecule’s effectiveness: “Precursors to urolithin A are found not only in pomegranates, but also in smaller amounts in many nuts and berries. Yet for it to be produced in our intestines, the bacteria must be able to break down what we’re eating. When, via digestion, a substance is produced that is of benefit to us, natural selection favors both the bacteria involved and their host. Our objective is to follow strict clinical validations, so that everyone can benefit from the result of these millions of years of evolution.”

Source; http://actu.epfl.ch/

 

NanoDrones Destroy Fat In Arteries

Nanometer-sized “drones” will deliver a special type of healing molecule to fat deposits in arteries. This is new approach to prevent heart attacks caused by atherosclerosis, according to a study in pre-clinical models by scientists at Brigham and Women’s Hospital (BWH) and Columbia University Medical Center.

Although current treatments have reduced the number of deaths from atherosclerosis-related disease, atherosclerosis remains a dangerous health problem: Atherosclerosis of the coronary arteries is the #1 killer of women and men in the U.S., resulting in one out of every four deaths. In the study, targeted biodegradable nanodrones’ that delivered a special type of drug that promotes healing (‘resolution‘) successfully restructured atherosclerotic plaques in mice to make them more stable. This remodeling of the plaque environment would be predicted in humans to block plaque rupture and thrombosis and thereby prevent heart attacks and strokes.
nanodronesNanometer-sized ‘drones’ that deliver a special type of healing molecule to fat deposits in arteries could become a new way to prevent heart attacks caused by atherosclerosis
This is the first example of a targeted nanoparticle technology that reduces atherosclerosis in an animal model,” said co-senior author Omid Farokhzad, MD, associate professor and director of the Laboratory of Nanomedicine and Biomaterials at BWH and Harvard Medical School (HMS). “Years of research and collaboration have culminated in our ability to use nanotechnology to resolve inflammation, remodel and stabilize plaques in a model of advanced atherosclerosis.”

These findings are published in the February 18th online issue of Science Translational Medicine.
Source: http://www.brighamandwomens.org/

Tick Saliva To Combat Cancer

Brazilian doctors hope a compound found in a common blood-sucking tick can be used to break down cancerous tumours in humans after successful results in laboratory animals.
It’s not a pleasant sight; ticks having their saliva extracted. But according to researchers at the Butantan Institute in Brazil, the arachnid’s spit could be extremely valuable in fighting cancer. Project coordinator, Ana Marisa Chudzinski-Tavassi, says her team originally explored the anti blood-clotting properties of tick saliva. But they soon found that one particular molecule, Ambyomin-X, also kills malignant cells. Tests on mice and rabbits not only reduced cancerous tumours, but did so without damaging healthy cells.
tick saliva
Usually with chemotherapy, though it has a bigger effect on tumour cells than on normal cells, normal cells are also always harmed. And what we’ve seen here, even with 42 days of treatment in animals, is that we aren’t reaching normal cells. So the idea is that side effects will be far fewer“, says Doctor Ana Marisa Chudzinski-Tavassi, from the Instituto Butantan (Brazil). The tick saliva compound has successfully treated animals with cancers of the skin, pancreas, kidneys and metastases in the lungs. And Chudzinski-Tavassi says she hopes Brazil’s National Health Surveillance Agency will soon approve human clinical trials. She says these could prove an important breakthrough in the fight against cancer and put Brazil on the biotechnology map.

Source: http://www.reuters.com/
AND
http://www.butantan.gov.br/

DNA-based NanoComputer

DNA-based programmable circuits can be more sophisticated, cheaper and simpler to make. In a new research paper published in Nature Nanotechnology, an international group of scientists announced the most significant breakthrough in a decade toward developing DNA-based electrical circuits. The central technological revolution of the 20th century was the development of computers, leading to the communication and Internet era. The main measure of this evolution is miniaturization: making our machines smaller. A computer with the memory of the average laptop today was the size of a tennis court in the 1970s. Yet while scientists made great strides in reducing of the size of individual computer components through microelectronics, they have been less successful at reducing the distance between transistors, the main element of our computers. These spaces between transistors have been much more challenging and extremely expensive to miniaturize – an obstacle that limits the future development of computers.

molecular electronics2Molecular electronics, which uses molecules as building blocks for the fabrication of electronic components, was seen as the ultimate solution to the miniaturization challenge. Nevertheless, so far no one has been able to demonstrate reliably and quantitatively the flow of electrical current through long DNA molecules.
Now, an international group led by Prof. Danny Porath, the Etta and Paul Schankerman Professor in Molecular Biomedicine at the Hebrew University of Jerusalem, reports reproducible and quantitative measurements of electricity flow through long molecules made of four DNA strands, signaling a significant breakthrough towards the development of DNA-based electrical circuits.

Source: http://new.huji.ac.il/

 

How To Extract Molecules From Live Cells

University of Houston (UH) researchers have devised a new method for extracting molecules from live cells without disrupting cell development, work that could provide new avenues for the diagnosis of cancer and other diseases. The researchers used magnetized carbon nanotubes to extract biomolecules from live cells, allowing them to retrieve molecular information without killing the individual cells.

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time, said Zhifeng Ren, M.D. Anderson Chair professor of physics and principal investigator at the Center for Superconductivity at UH and lead author of the paper. The work was a collaboration between Ren’s lab and that of Paul Chu, T.L.L. Temple Chair of Science and founding director of the Texas Center for Superconductivity.
Other key researchers on the project included Xiaoliu Zhang, a cancer researcher with the UH Center for Nuclear Receptors and Cell Signaling, and Dong Cai, assistant professor of physics. Chu, a co-author of the paper, said the new technique will allow researchers to draw fundamental information from a single cell.
cell
Now, (most) techniques break up many cells to extract the material inside the cells, so what you get is the average over many cells,” Zhifeng Ren said. “The individual cells may be different, but you cannot see exactly how they function.

A description of the work appears this week in the Proceedings of the National Academy of Sciences.
Source: http://www.uh.edu/

Mimicking Onion To Deliver Drugs

One of the defining features of cells is their membranes. Each cell’s repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate these properties, but, despite decades of research, even the most basic membrane structures, known as vesicles, still face many problems when made in the lab. They are difficult to make at consistent sizes and lack the stability of their biological counterparts. Now, University of Pennsylvania researchers, led by professor Virgil Percec, of the Department of Chemistry in Penn’s School of Arts & Sciences, have shown that a certain kind of dendrimer, a molecule that features tree-like branches, offers a simple way of creating vesicles and tailoring their diameter and thickness. Moreover, these dendrimer-based vesicles self-assemble with concentric layers of membranes, much like an onion.

By altering the concentration of the dendrimers suspended within, the researchers have shown that they can control the number of layers, and thus the diameter of the vesicle, when the solution is injected in water. Such a structure opens up possibilities of releasing drugs over longer periods of time, with a new dose in each layer, or even putting a cocktail of drugs in different layers so each is released in sequence.
The researchers created “onion” dendrimersomes, which have multiple concentric membranes, each made of two layers of dendrimers
The problem,” Percec said, “is that once you remove the proteins and the other elements of a real biological membrane, they are unstable and don’t last for a long time. It’s also hard to control their permeability and their polydispersity, which is how close together in size they are. The methodologies for producing them are also complicated and expensive.”
If you want to deliver a single drug over the course of 20 days,” Perce said, “you could think about putting one dose of the drug in each layer and have it released over time. Or you might put one drug in the first layer, another drug in the second and so on. Being able to control the diameter of the vesicles may also have clinical uses; target cells might only accept vesicles of a certain size.

The study was published in Proceedings of the National Academy of Sciences.
Source: http://www.upenn.edu/

Can A NanoSwitch Provoke A Macro Motion?

Researchers of the University of Twente‘s MESA+ research institute – Netherlands – have developed spiral ribbons made of molecules, that are able to convert light into complex macroscopic motion. Therefore, they managed to amplify molecular motion and translate it to the macroscopic world. The research, which was inspired by movement in plants, is published in the journal Nature Chemistry.

NANOSWITCHES CONVERTING LIGHT INTO MACROSCOPIC MOTION
Over the past decades, chemists have constructed various molecular machines, including molecular tweezers and scissors, and even molecular nanocars. However, the motion of molecular machines is generally limited to the nanoworld only. Amplifying the motion of these systems in such a way that they would affect the macroscopic world consequently remains a major contemporary challenge.
Nathalie KatsonisUniversity of Twente’s MESA+ research institute led by principal researcher Nathalie Katsonis have risen up to this challenge. They developed spiral ribbons containing molecular nanoswitches. These spirals curl, twist, contract or expand under the influence of UV light, and might be used to perform work, for instance by shifting magnets.

Source; http://www.utwente.nl/

Zoom And Observe Atoms Moving

A new microscope invented at Michigan State University (MSU) allows scientists to zoom in on the movements of atoms and molecules. Electron microscopes allow scientists to see the structure of microorganisms, cells, metals, crystals and other tiny structures that weren’t visible with light microscopes. But while these images have allowed scientists to make great discoveries, the relationship between structure and function could only be estimated because of static images. In the 1990s, researchers added a fourth dimension time – by using a laser to capture images of gaseous molecules as they were reacting.
Now scientists from MSU has brought these “molecular movies” down to the nanoscale level, where the properties of materials begin to change. The work has applications in nanoelectronic technologies and in clean-energy industries.

Michigan MicroscopeA new microscope invented at MSU allows scientists to zoom in on the movements of atoms and molecules
Implementing such a technology within an electron microscope setup allows one to examine crucial functions in nanoscale devices,” Chong-Yu Ruan, MSU associate professor of physics and astronomy said. “The goal is to explore the limits where specific physical, chemical and biological transformations can occur.”
Research team from MSU is one of the few in the world actively developing electron-based imaging technology on the femtosecond timescale. One femtosecond is one-millionth of a billionth of a second – a fundamental timescale that atoms take to perform specific tasks, such as mediating the traffic of electrical charges or participating in the chemical reactions.

Source: http://msutoday.msu.edu/