Nano Robots Build Molecules

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules.

The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines.

All matter is made up of atoms and these are the basic building blocks that form molecules. Our robot is literally a molecular robot constructed of atoms just like you can build a very simple robot out of Lego bricks, explains Professor David Leigh, who led the research at University’s School of Chemistry. “The robot then responds to a series of simple commands that are programmed with chemical inputs by a scientistIt is similar to the way robots are used on a car assembly line. Those robots pick up a panel and position it so that it can be riveted in the correct way to build the bodywork of a car. So, just like the robot in the factory, our molecular version can be programmed to position and rivet components in different ways to build different products, just on a much smaller scale at a molecular level.”

The research has been published in Nature.

Source: http://www.manchester.ac.uk/

NanoCar Race

The NanoCar Race is an event in which molecular machines compete on a nano-sized racetrack. These “NanoCars” or molecule-cars can have real wheels, an actual chassis…and are propelled by the energy of electric pulses! Nothing is visible to the naked eye, however a unique microscope located in Toulouse (France) will make it possible to follow the race. A genuine scientific prowess and international human adventure, the race is a one-off event, and will be broadcast live on the web, as well as at the Quai des Savoirs, science center in Toulouse.

nanocars

The NanoCar race takes place on a very small scale, that of molecules and atoms: the nano scale…as in nanometer! A nanometer is a billionth of a meter, or 0.000000001 meters or 10 -9 m. In short, it is 500,000 times thinner then a line drawn by a ball point pen; 30,000 times thinner than the width of a hair; 100 times smaller than a DNA molecule; 4 atoms of silicon lined up next to one another.

A very powerful microscope is necessary to observe molecules and atoms: the scanning tunneling microscope (STM) makes this possible, and it is also responsible for propelling the NanoCars. The scanning tunneling microscope was invented in 1981 by Gerd Binnig and Heinrich Rohrer, and earned them the Nobel Prize in Physics in 1986. The tunnel effect is a phenomenon in quantum mechanics: using a tip and an electric current, the microscope will use this phenomenon to determine the electric conductance between the tip and the surface, in other words the amount of current that is passing through.

nanocar in movement Screening provides an electronic map of the surface and of each atom or molecule placed on it.At the CNRS‘s Centre d’élaboration de matériaux et d’études structurales (CEMES) in Toulouse, it is the one of a kind STM microscope that makes the race possible: the equivalent of four scanning tunneling microscopes, this device is the only one able to simultaneously and independently map four sections of the track in real time, thanks to its four tungsten tips.

Source: http://nanocar-race.cnrs.fr/

How To Fine-Tune NanoFabrication

Daniel Packwood, Junior Associate Professor at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS), is improving methods for constructing tiny “nanomaterials” using a “bottom-up” approach called “molecular self-assembly”. Using this method, molecules are chosen according to their ability to spontaneously interact and combine to form shapes with specific functions. In the future, this method may be used to produce tiny wires with diameters 1/100,000th that of a piece of hair, or tiny electrical circuits that can fit on the tip of a needle.

nanofabrication

Molecular self-assembly is a spontaneous process that cannot be controlled directly by laboratory equipment, so it must be controlled indirectly. This is done by carefully choosing the direction of the intermolecular interactions, known as “chemical control”, and carefully choosing the temperature at which these interactions happen, known as “entropic control”. Researchers know that when entropic control is very weak, for example, molecules are under chemical control and assemble in the direction of the free sites available for molecule-to-molecule interaction. On the other hand, self-assembly does not occur when entropic control is much stronger than the chemical control, and the molecules remain randomly dispersed.

Packwood teamed up with colleagues in Japan and the U.S. to develop a computational method that allows them to simulate molecular self-assembly on metal surfaces while separating the effects of chemical and entropic controls. This new computational method makes use of artificial intelligence to simulate how molecules behave when placed on a metal surface. Specifically, a “machine learning” technique is used to analyse a database of intermolecular interactions. This machine learning technique builds a model that encodes the information contained in the database, and in turn this model can predict the outcome of the molecular self-assembly process with high accuracy.

Source: http://www.kyoto-u.ac.jp/

Cheap Biosensor Detects Alzheimer’s, Cancer, Parkinson’s

A biosensor developed by researchers at the National Nanotechnology Laboratory (LNNano) in Campinas, São Paulo State, Brazil, has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.

biosensor LNNano

The device is basically a single-layer organic nanometer-scale transistor on a glass slide. It contains the reduced form of the peptide glutathione (GSH), which reacts in a specific way when it comes into contact with the enzyme glutathione S-transferase (GST), linked to Parkinson’s, Alzheimer’s and breast cancer, among other diseases. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

The project focuses on the development of point-of-care devices by researchers in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis.

Platforms like this one can be deployed to diagnose complex diseases quickly, safely and relatively cheaply, using nanometer-scale systems to identify molecules of interest in the material analyzed,” explained Carlos Cesar Bof Bufon, Head of LNNano’s Functional Devices & Systems Lab (DSF) and a member of the research team for the project, whose principal investigator is Lauro Kubota, a professor at the University of Campinas’s Chemistry Institute (IQ-UNICAMP).

In addition to portability and low cost, the advantages of the nanometric biosensor include its sensitivity in detecting molecules, according to Bufon.

This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example,” he explained. “The device can detect such molecules even when they’re present at very low levels in the examined material, thanks to its nanometric sensitivity.” A nanometer (nm) is one billionth of a meter (10-9 meter), or one millionth of a millimeter.

The system can be adapted to detect other substances, such as molecules linked to different diseases and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the chemicals targeted by the test, which are known as analytes.

Source: http://www.eurekalert.org/

Nanoscale Submarines Will Carry Cargoes Through The Blood

Though they’re not quite ready for boarding a lá “Fantastic Voyage,” nanoscale submarines created at Rice University are proving themselves seaworthy. Each of the single-molecule, 244-atom submersibles built in the Rice lab of chemist James Tour has a motor powered by ultraviolet light. With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers.

And with the motors running at more than a million RPM, that translates into speed. Though the sub’s top speed amounts to less than 1 inch per second, Tour said that’s a breakneck pace on the molecular scale.

submarine at nanoscale

These are the fastest-moving molecules ever seen in solution,” he said.

Expressed in a different way, the researchers reported this month in the American Chemical Society journal Nano Letters that their light-driven nanosubmersibles show an “enhancement in diffusion” of 26 percent. That means the subs diffuse, or spread out, much faster than they already do due to Brownian motion, the random way particles spread in a solution. While they can’t be steered yet, the study proves molecular motors are powerful enough to drive the sub-10-nanometer subs through solutions of moving molecules of about the same size.

This is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him,” Tour said. Rice’s researchers hope future nanosubs will be able to carry cargoes for medical and other purposes. “There’s a path forward,” García-López said. “This is the first step, and we’ve proven the concept. Now we need to explore opportunities and potential applications.”

Source: http://news.rice.edu/

Very Powerful Sensor Can Identify 20 Atoms Molecule

Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

The new imaging method, which is described this week in the journal Nature Communications, uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Researchers at Rice’s Laboratory for Nanophotonics (LANP) said the single-molecule sensor is about 10 times more powerful that previously reported devices.

molecular sensorRice‘s SECARS molecular sensor contains an optical amplifier made of four gold discs arranged in a diamond-shaped pattern. A two-coherent-laser setup amplifies the optical signatures of molecules in the center of the structure as much as 100 billion times
Ours and other research groups have been designing single-molecule sensors for several years, but this new approach offers advantages over any previously reported method,” said LANP Director Naomi Halas, the lead scientist on the study. “The ideal single-molecule sensor would be able to identify an unknown molecule — even a very small one — without any prior information about that molecule’s structure or composition. That’s not possible with current technology, but this new technique has that potential.”

Source: http://news.rice.edu/

How To Scan Molecules

Molecules could soon be “scanned” in a fashion similar to imaging screenings at airports, thanks to a detector developed by University of Pittsburgh physicists. The detector, featured in a recent issue of Nano Letters, may have the ability to chemically identify single molecules using terahertz radiation—a range of light far below what the eye can detect.

Etch A sketchOur invention allows lines to be ‘written’ and ‘erased’ much in the manner that an Etch A Sketch® toy operates,” said study coauthor Jeremy Levy, professor in the Department of Physics and Astronomy within the Kenneth P. Dietrich School of Arts and Sciences. “The only difference is that the smallest feature is a trillion times smaller than the children’s toy, able to create conductive lines as narrow as two nanometers.
Source: http://www.news.pitt.edu/

The New BioFactory

In order to assemble novel biomolecular machines, individual protein molecules must be installed at their site of operation with nanometer precision. Researchers from the Ludwig Maximilian Universitat MunchenLMU – Germany – have now found a way to do just that. Green light on protein assembly! In a major step towards this goal, the LMU team has modified the method to allow them to take proteins from a storage site and place them at defined locations within a construction area with nanometer precision. “In liquid medium at room temperature, the “weather conditions” at the nanoscale are comparable to those in a hurricane,” says Mathias Strackharn, first author of the new study. Hence, the molecules being manipulated must be firmly attached to the tip of the AFM and held securely in place in the construction area.


We demonstrated the method’s feasibility by bringing hundreds of fluorescent GFP molecules together to form a little green man, like the traffic-light figure that signals to pedestrians to cross the road, but only some micro micrometers high,” Strackharn explains.

Traffic signals prove the efficiency
The forces that tether the proteins during transport and assembly must also be weak enough not to cause damage, and must be tightly controlled. To achieve these two goals, the researchers used a combination of antibodies, DNA-binding “zinc-finger” proteins, and DNA anchors. Source:
http://www.en.uni-muenchen.de/news/newsarchiv/2012/2012_strackharn.html