Nanocoatings Reduce Dental Implant Bacterial Infection By 97%

According to the American Academy of Implant Dentistry (AAID), 15 million Americans have crown or bridge replacements and three million have dental implants – with this latter number rising by 500,000 a year. The AAID estimates that the value of the American and European market for dental implants will rise to $4.2 billion by 2022. Dental implants are a successful form of treatment for patients, yet according to a study published in 2005, five to ten per cent of all dental implants fail. The reasons for this failure are several-fold – mechanical problems, poor connection to the bones in which they are implanted, infection or rejection. When failure occurs the dental implant must be removed. The main cause for dental implant failure is peri-implantitis. This is the destructive inflammatory process affecting the soft and hard tissues surrounding dental implants. This occurs when pathogenic microbes in the mouth and oral cavity develop into biofilms, which protects them and encourages growth. Peri-implantitis is caused when the biofilms develop on dental implants.

A research team comprising scientists from the School of Biological and Marine Sciences, Peninsula Schools of Medicine and Dentistry and the School of Engineering at the University of Plymouth, have joined forces to develop and evaluate the effectiveness of a new nanocoating for dental implants to reduce the risk of peri-implantitis.

dentistIn this cross-Faculty study we have identified the means to protect dental implants against the most common cause of their failure. The potential of our work for increased patient comfort and satisfaction, and reduced costs, is great and we look forward to translating our findings into clinical practice,”  commented Professor Christopher Tredwin, Head of Plymouth University Peninsula School of Dentistry.

In the study, the research team created a new approach using a combination of silver, titanium oxide and hydroxyapatite nanocoatings. The application of the combination to the surface of titanium alloy implants successfully inhibited bacterial growth and reduced the formation of bacterial biofilm on the surface of the implants by 97.5 per cent.

Not only did the combination result in the effective eradication of infection, it created a surface with anti-biofilm properties which supported successful integration into surrounding bone and accelerated bone healing.

The results of their work are published in the journal Nanotoxicology.

Source: https://www.plymouth.ac.uk/

How To Help Planes Fly Safely Trough Icy Condidions?

To help planes fly safely through cold, wet, and icy conditions, a team of Japanese scientists has developed a new super water-repellent surface that can prevent ice from forming in these harsh atmospheric conditions. Unlike current inflight anti-icing techniques, the researchers envision applying this new anti-icing method to an entire aircraft like a coat of paint.
As airplanes fly through clouds of super-cooled water droplets, areas around the nose, the leading edges of the wings, and the engine cones experience low airflow, says Hirotaka Sakaue, a researcher in the fluid dynamics group at the Japan Aerospace Exploration Agency (JAXA). This enables water droplets to contact the aircraft and form an icy layer. If ice builds up on the wings it can change the way air flows over them, hindering control and potentially making the airplane stall. Other members of the research team are with the University of Tokyo, the Kanagawa Institute of Technology, and Chuo University.

Current anti-icing techniques include diverting hot air from the engines to the wings, preventing ice from forming in the first place, and inflatable membranes known as pneumatic boots, which crack ice off the leading edge of an aircraft’s wings. The super-hydrophobic, or water repelling, coating being developed by Sakaue, Katsuaki Morita – a graduate student at the University of Tokyo – and their colleagues works differently, by preventing the water from sticking to the airplane’s surface in the first place.
Source: http://meeting.aps.org/

Nano-coating Protects Biomaterials And Medical Devices

A nanotech material containing an extract from liquorice can be used to sterilize and protect medical devices and implants which include biological components, and protects these functional bio-components during the sterilization process. Conventional sterilization techniques based on a blast of radiation, or exposure to toxic gas can damage the functional biological components of the device. The coating, containing a component found in liquorice and developed by German biotech company LEUKOCARE AG, protects these sensitive components.
“This nano-coating formulation can now be applied for the production of improved biofunctionalized medical devices such as bone implants, vascular stents, and wound dressings and will ease the application of biomedical combination products,” explains Joachim Koch of the Georg-Speyer Haus, Institute for Biomedical Research in Frankfurt am Main in Germany, who conducts the research.
Source: http://www.sciencedirect.com/science/article/pii/S1369702112701669