All Carbon Spin Transistor Is Quicker And Smaller

A researcher with the Erik Jonsson School of Engineering and Computer Science at UT Dallas has designed a novel computing system made solely from carbon that might one day replace the silicon transistors that power today’s electronic devices.

The concept brings together an assortment of existing nanoscale technologies and combines them in a new way,” said Dr. Joseph S. Friedman, assistant professor of electrical and computer engineering at UT Dallas who conducted much of the research while he was a doctoral student at Northwestern University.

The resulting all-carbon spin logic proposal, published by lead author Friedman and several collaborators in the June 5 edition of the online journal Nature Communications, is a computing system that Friedman believes could be made smaller than silicon transistors, with increased performance.

Today’s electronic devices are powered by transistors, which are tiny silicon structures that rely on negatively charged electrons moving through the silicon, forming an electric current. Transistors behave like switches, turning current on and off.

In addition to carrying a charge, electrons have another property called spin, which relates to their magnetic properties. In recent years, engineers have been investigating ways to exploit the spin characteristics of electrons to create a new class of transistors and devices called “spintronics.”

Friedman’s all-carbon, spintronic switch functions as a logic gate that relies on a basic tenet of electromagnetics: As an electric current moves through a wire, it creates a magnetic field that wraps around the wire. In addition, a magnetic field near a two-dimensional ribbon of carbon — called a graphene nanoribbon — affects the current flowing through the ribbon. In traditional, silicon-based computers, transistors cannot exploit this phenomenon. Instead, they are connected to one another by wires. The output from one transistor is connected by a wire to the input for the next transistor, and so on in a cascading fashion.


How To Harness Heat To Power Computers

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don’t overheat or shut down. Instead of combating the heat, two University of Nebraska–Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group’s development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers.

thermal diode

If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways,” Ndao said. “In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating.”

A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanical and materials engineering, was published in the March edition of Scientific Reports. In it, they documented their device working in temperatures that approached 630 degrees Fahrenheit (332 degrees Celsius).


Carbon Nanotubes Self-Assemble Into Tiny Transistors

Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle. University of Groningen (Netherlands) scientists, together with colleagues from the University of Wuppertal and IBM Zurich, have developed a method to select semiconducting nanotubes from a solution and make them self-assemble on a circuit of gold electrodes. The results look deceptively simple: a self-assembled transistor with nearly 100 percent purity and very high electron mobility. But it took ten years to get there. University of Groningen Professor of Photophysics and Optoelectronics Maria Antonietta Loi designed polymers which wrap themselves around specific carbon nanotubes in a solution of mixed tubes. Thiol side chains on the polymer bind the tubes to the gold electrodes, creating the resultant transistor.

polymer wrapped nanotube

In our previous work, we learned a lot about how polymers attach to specific carbon nanotubes, Loi explains. These nanotubes can be depicted as a rolled sheet of graphene, the two-dimensional form of carbon. ‘Depending on the way the sheets are rolled up, they have properties ranging from semiconductor to semi-metallic to metallic.’ Only the semiconductor tubes can be used to fabricate transistors, but the production process always results in a mixture.

We had the idea of using polymers with thiol side chains some time ago‘, says Loi. The idea was that as sulphur binds to metals, it will direct polymer-wrapped nanotubes towards gold electrodes. While Loi was working on the problem, IBM even patented the concept. ‘But there was a big problem in the IBM work: the polymers with thiols also attached to metallic nanotubes and included them in the transistors, which ruined them.’

Loi’s solution was to reduce the thiol content of the polymers, with the assistance of polymer chemists from the University of Wuppertal. ‘What we have now shown is that this concept of bottom-up assembly works: by using polymers with a low concentration of thiols, we can selectively bring semiconducting nanotubes from a solution onto a circuit.’ The sulphur-gold bond is strong, so the nanotubes are firmly fixed: enough even to stay there after sonication of the transistor in organic solvents.

Over the last years, we have created a library of polymers that select semiconducting nanotubes and developed a better understanding of how the structure and composition of the polymers influences which carbon nanotubes they select’, says Loi. The result is a cheap and scalable production method for nanotube electronics. So what is the future for this technology? Loi: ‘It is difficult to predict whether the industry will develop this idea, but we are working on improvements, and this will eventually bring the idea closer to the market.’

The results were published in the journal Advanced Materials on 5 April.

‘Spray-On’ Memory for Paper, Fabric, Plastic

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere – including on our groceries, pill bottles and even clothingDuke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new “spray-on digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed at relatively low temperatures, it could be used to build programmable electronic devices on bendable materials like paper, plastic or fabric.


Duke University researchers have developed a new “spray-on” digital memory (upper left) that could be used to build programmable electronics on flexible materials like paper, plastic or fabric. They used LEDS to demonstrate a simple application.

We have all of the parameters that would allow this to be used for a practical application, and we’ve even done our own little demonstration using LEDs,” said Duke graduate student Matthew Catenacci, who describes the device in a paper published online in the Journal of Electronic Materials. At the core of the new device, which is about the size of a postage stamp, is a new copper-nanowire-based printable material that is capable of storing digital information.

Memory is kind of an abstract thing, but essentially it is a series of ones and zeros which you can use to encode information,” said Benjamin Wiley, an associate professor of chemistry at Duke and an author on the paper.


A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.


NanoMachine Lifts 15 times Its Weight

Using advanced 3-D printing, Dartmouth College researchers have unlocked the key to transforming microscopic nanorings into smart materials that perform work at human-scaleNanomachines (nanocomputers) can already deliver medication and serve as computer memories at the tiny nanometer scale. By integrating a 3-D printing technique pioneered at Dartmouth’s Ke Functional Materials Group, researchers may unlock even greater potential for these mini-machines.

3D printing nanomachines

A 3-D printed gel structure lifts and lowers a U.S. dime when alternately exposed to water and DMSO solvent

Up until now, harnessing the mechanical work of nanomachines has been extremely difficult. We are slowly getting closer to the point that the tiny machines can operate on a scale that we can see, touch and feel.” said Chenfeng Ke, Assistant Professor for Chemistry at Dartmouth College and principle investigator for the research.

In an example provided by Ke, the first-generation smart material lifted a dime weighing 2.268g. The coin, 15 times the weight of the that lifted it, was raised 1.6 mm– the equivalent of a human lifting a car. “Creating nanomachine-based smart material is still extraordinarily complex and we are only just beginning, but this new technique could allow the design and fabrication of complex smart devices that are currently beyond our grasp,” said Ke.

The research was published on March 22 in the online edition of Angewandte Chemie, the journal of the German Chemical Society.


Semiconductors As Thin As An Atom

A two-dimensional material developed by physicist Prof. Dr. Axel Enders (Bayreuth University  in Germany) together with international partners could revolutionize electronicsSemiconductors that are as thin as an atom are no longer the stuff of .  Thanks to its semiconductor properties, this material could be much better suited for high tech applications than graphene, the discovery of which in 2004 was celebrated worldwide as a . This new material contains carbon, boron, and nitrogen, and its chemical name is “Hexagonal Boron-Carbon-Nitrogen (h-BCN)”. The new development was published in the journal ACS Nano.

2D material Bayreuth University

Our findings could be the starting point for a new generation of electronic transistors, circuits, and sensors that are much smaller and more bendable than the electronic elements used to date. They are likely to enable a considerable decrease in power consumption,” Prof. Enders predicts, citing the CMOS technology that currently dominates the electronics industry. This technology has clear limits with regard to further miniaturization. “h-BCN is much better suited than graphene when it comes to pushing these limits,” according to Enders.

Graphene is a two-dimensional lattice made up entirely of carbon atoms. It is thus just as thin as a single atom. Once scientists began investigating these structures more closely, their remarkable properties were greeted with enthusiasm across the world. Graphene is 100 to 300 times stronger than steel and is, at the same time, an excellent conductor of heat and electricity.


Nano Printing Heralds NanoComputers Era

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics. The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick). Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures – 550 degrees or more.

Professor Kourosh Kalantar-zadeh, from RMIT’s School of Engineering in Australia , led the project with  colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the the University of California, He observed that the electronics industry had “hit a barrier.

nano printing

The fundamental technology of car engines has not progressed since 1920 and now the same is happening to electronics. Mobile phones and computers are no more powerful than five years ago. That is why this new 2D printing technique is so important – creating many layers of incredibly thin electronic chips on the same surface dramatically increases processing power and reduces costsIt will allow for the next revolution in electronics.

Benjamin Carey, a researcher with RMIT and the CSIRO, said creating electronic wafers just atoms thick could overcome the limitations of current chip production. It could also produce materials that were extremely bendable, paving the way for flexible electronics. “However, none of the current technologies are able to create homogenous surfaces of atomically thin semiconductors on large surface areas that are useful for the industrial scale fabrication of chips.  Our solution is to use the metals gallium and indium, which have a low melting point.  These metals produce an atomically thin layer of oxide on their surface that naturally protects them. It is this thin oxide which we use in our fabrication method,”  explains Carey.

By rolling the liquid metal, the oxide layer can be transferred on to an electronic wafer, which is then sulphurised. The surface of the wafer can be pre-treated to form individual transistors.  We have used this novel method to create transistors and photo-detectors of very high gain and very high fabrication reliability in large scale,” he adds.

The paper outlining the new technique has been published in the journal Nature Communications.


Nano-LED 1000 Times More Efficient

The electronic data connections within and between microchips are increasingly becoming a bottleneck in the exponential growth of data traffic worldwide. Optical connections are the obvious successors but optical data transmission requires an adequate nanoscale light source, and this has been lacking. Scientists at Eindhoven University of Technology (TU/e) now have created a light source that has the right characteristics: a nano-LED that is 1000 times more efficient than its predecessors, and is capable of handling gigabits per second data speeds.

NANO LEDWith electrical cables reaching their limits, optical connections like fiberglass are increasingly becoming the standard for data traffic. Over longer distances almost all data transmission is optical. Within computer systems and microchips, too, the growth of data traffic is exponential, but that traffic is still electronic, and this is increasingly becoming a bottleneck. Since these connections (‘interconnects’) account for the majority of the energy consumed by chips, many scientists around the world are working on enabling optical (photonic) interconnects. Crucial to this is the light source that converts the data into light signals which must be small enough to fit into the microscopic structures of microchips. At the same time, the output capacity and efficiency have to be good. Especially the efficiency is a challenge, as small light sources, powered by nano– or microwatts, have always performed very inefficiently to date.
The researchers in Eindhoven believe that their nano-LED is a viable solution that will take the brake off the growth of data traffic on chips. However, they are cautious about the prospects. The development is not yet at the stage where it can be exploited by the industry and the production technology that is needed still has to get off the ground.
The findings are reported in the online journal Nature Communications.


Breakthrough In The BioMedical Industry

Polyhedral boranes, or clusters of boron atoms bound to hydrogen atoms, are transforming the biomedical industry. These manmade materials have become the basis for the creation of cancer therapies, enhanced drug delivery and new contrast agents needed for radioimaging and diagnosis. Now, a researcher at the University of Missouri has discovered an entirely new class of materials based on boranes that might have widespread potential applications, including improved diagnostic tools for cancer and other diseases as well as low-cost solar energy cells.

Mark Lee Jr., an assistant professor of chemistry in the MU College of Arts and Science, discovered the new class of hybrid nanomolecules by combining boranes with carbon and hydrogen. Boranes are chemically stable and have been tested at extreme heat of up to 900 degrees Celsius or 1,652 degrees Fahrenheit. It is the thermodynamic stability these molecules exhibit that make them non-toxic and attractive to the biomedical, personal computer and alternative energy industries.
Polyhedral boranes

Despite their stability, we discovered that boranes react with aromatic hydrocarbons at mildly elevated temperatures, replacing many of the hydrogen atoms with rings of carbon,” Lee said. “Polyhedral boranes are incredibly inert, and it is their reaction with aromatic hydrocarbons like benzene that will make them more useful.”

Lee also showed that the attached hydrocarbons communicate with the borane core. “The result is that these new materials are highly fluorescent in solution,” Lee said. “Fluorescence can be used in applications such as bio-imaging agents and organic light-emitting diodes like those in phones or television screens. Solar cells and other alternative energy sources also use fluorescence, so there are many practical uses for these new materials.
The findings have been recently published in the international journal Angewandte Chemie.


Electronics: How To Dissipate Heat in A Nanocomputer

Controlling the flow of heat through semiconductor materials is an important challenge in developing smaller and faster computer chips, high-performance solar panels, and better lasers and biomedical devices. For the first time, an international team of scientists led by a researcher at the University of California, Riverside has modified the energy spectrum of acoustic phononselemental excitations, also referred to as quasi-particles, that spread heat through crystalline materials like a wave—by confining them to nanometer-scale semiconductor structures. The results have important implications in the thermal management of electronic devices. Led by Alexander Balandin, Professor of Electrical and Computing Engineering and UC Presidential Chair Professor in UCR’s Bourns College of Engineering, the research is described in a paper published in the journal Nature Communications.


The team used semiconductor nanowires from Gallium Arsenide (GaAs), synthesized by researchers in Finland, and an imaging technique called Brillouin-Mandelstam light scattering spectroscopy (BMS) to study the movement of phonons through the crystalline nanostructures. By changing the size and the shape of the GaAs nanostructures, the researchers were able to alter the energy spectrum, or dispersion, of acoustic phonons. The BMS instrument used for this study was built at UCR’s Phonon Optimized Engineered Materials (POEM) Center, which is directed by Balandin.

Controlling phonon dispersion is crucial for improving heat removal from nanoscale electronic devices, which has become the major roadblock in allowing engineers to continue to reduce their size. It can also be used to improve the efficiency of thermoelectric energy generation, Balandin said. In that case, decreasing thermal conductivity by phonons is beneficial for thermoelectric devices that generate energy by applying a temperature gradient to semiconductors.

For years, the only envisioned method of changing the thermal conductivity of nanostructures was via acoustic phonon scattering with nanostructure boundaries and interfaces. We demonstrated experimentally that by spatially confining acoustic phonons in nanowires one can change their velocity, and the way they interact with electrons, magnons, and how they carry heat. Our work creates new opportunities for tuning thermal and electronic properties of semiconductor materials,” Balandin said.


Swiches For Electricity: Atomic-Scale Manufacturing

Robert Wolkow is no stranger to mastering the ultra-small and the ultra-fast. A pioneer in atomic-scale science with a Guinness World Record to boot (for a needle with a single atom at the point), Wolkow’s team, together with collaborators at the Max Planck Institute in Hamburg, have just released findings that detail how to create atomic switches for electricity, many times smaller than what is currently used. With applications for practical systems like silicon semi-conductor electronics, it means smaller, more efficient, more energy-conserving nanocomputers, as just one example of the technology revolution that is unfolding right before our very eyes (if you can squint that hard).


It’s something you don’t even hear about yet, but atom-scale manufacturing is going to be world-changing. This is just the beginning of what will be at least a century of developments in atom-scale manufacturing, and it will be transformational“.  “This is the first time anyone’s seen a switching of a single-atom channel,” explains Wolkow, a physics professor at the University of Alberta and the Principal Research Officer at Canada’s National Institute for Nanotechnology. “You’ve heard of a transistor—a switch for electricity—well, our switches are almost a hundred times smaller than the smallest on the market today.

Today’s tiniest transistors operate at the 14 nanometer level, which still represents thousands of atoms. Wolkow’s and his team at the University of Alberta, NINT, and his spinoff QSi, have worked the technology down to just a few atoms. Since computers are simply a composition of many on/off switches, the findings point the way not only to ultra-efficient general purpose computing but also to a new path to quantum computing.