Nanotechnology Boosts CyberSecurity Against Hackers

The next generation of electronic hardware security may be at hand as researchers at New York University Tandon School of Engineering  (NYU Tandon) introduce a new class of unclonable cybersecurity security primitives made of a low-cost nanomaterial with the highest possible level of structural randomness. Randomness is highly desirable for constructing the security primitives that encrypt and thereby secure computer hardware and data physically, rather than by programming.

In a paper published in the journal ACS Nano, Assistant Professor of Electrical and Computer Engineering Davood Shahrjerdi and his team at NYU Tandon offer the first proof of complete spatial randomness in atomically thin molybdenum disulfide (MoS2). The researchers grew the nanomaterial in layers, each roughly one million times thinner than a human hair. By varying the thickness of each layer, Shahrjerdi explained, they tuned the size and type of energy band structure, which in turn affects the properties of the material.

(a) At monolayer thickness, this material has the optical properties of a semiconductor that emits light. At multilayer, the properties change and the material doesn’t emit light. (b) Varying the thickness of each layer results in a thin film speckled with randomly occurring regions that alternately emit or block light. (c) Upon exposure to light, this pattern can be translated into a one-of-a-kind authentication key that could secure hardware components at minimal cost.

This property is unique to this material,” underscores Shahrjerdi. By tuning the material growth process, the resulting thin film is speckled with randomly occurring regions that alternately emit or do not emit light. When exposed to light, this pattern translates into a one-of-a-kind authentication key that could secure hardware components at minimal cost.

Source: http://engineering.nyu.edu/

How To Erase Chips Remotely

A military drone flying on a reconnaissance mission is captured behind enemy lines, setting into motion a team of engineers who need to remotely delete sensitive information carried on the drone’s chips. Because the chips are optical and not electronic, the engineers can now simply flash a beam of UV light onto the chip to instantly erase all content. Disaster averted.

This James Bond-esque chip is closer to reality because of a new development in a nanomaterial developed by Yuebing Zheng, a professor of mechanical engineering and materials science and engineering in the Cockrell School of Engineering. His team described its findings in the journal Nano Letters.

drone

The molecules in this material are very sensitive to light, so we can use a UV light or specific light wavelengths to erase or create optical components,” Zheng said. “Potentially, we could incorporate this LED into the chip and erase its contents wirelessly. We could even time it to disappear after a certain period of time.”

To test their innovation, the researchers used a green laser to develop a waveguide — a structure or tunnel that guides light waves from one point to another — on their nanomaterial. They then erased the waveguide with a UV light, and re-wrote it on the same material using the green laser. The researchers believe they are the first to rewrite a waveguide, which is a crucial photonic component and a building block for integrated circuits, using an all-optical technique.

Source: https://www.eurekalert.org/

How To Harvest Heat In The Dark To Produce Electricity

Physicists have discovered radical new properties in a nanomaterial, opening new possibilities for highly efficient thermophotovoltaic cells that could one day harvest heat in the dark and turn it into electricity. The research team from the Australian National University (ANU/ARC Centre of Excellence CUDOS) and the University of California Berkeley demonstrated a new artificial material, or metamaterial, that glows in an unusual way when heated.

The findings could drive a revolution in the development of cells which convert radiated heat into electricity, known as thermophotovoltaic cells. “Thermophotovoltaic cells have the potential to be much more efficient than solar cells,” said Dr Sergey Kruk from the ANU Research School of Physics and Engineering.

thermophotovoltaic

Our metamaterial overcomes several obstacles and could help to unlock the potential of thermophotovoltaic cells.”

Thermophotovoltaic cells have been predicted to be more than twice as efficient as conventional solar cells. They do not need direct sunlight to generate electricity, and instead can harvest heat from their surroundings in the form of infrared radiation. They can also be combined with a burner to produce on-demand power or can recycle heat radiated by hot engines. The team’s metamaterial, made of tiny nanoscopic structures of gold and magnesium fluoride, radiates heat in specific directions. The geometry of the metamaterial can also be tweaked to give off radiation in specific spectral range, in contrast to standard materials that emit their heat in all directions as a broad range of infrared wavelengths. This makes the new material ideal for use as an emitter paired with a thermophotovoltaic cell.

The project started when Dr Kruk predicted the new metamaterial would have these surprising properties. The ANU team then worked with scientists at the University of California Berkeley, who have unique expertise in manufacturing such materials.

To fabricate this material the Berkeley team were operating at the cutting edge of technological possibilities,” Dr Kruk said. “The size of an individual building block of the metamaterial is so small that we could fit more than 12,000 of them on the cross-section of a human hair.

The research is published in Nature Communications.

Source: http://www.anu.edu.au/

How To Integrate Graphene To Produce Solar Cells

Binghamton University researchers have demonstrated an eco-friendly process that enables unprecedented spatial control over the electrical properties of graphene oxide. This two-dimensional nanomaterial has the potential to revolutionize flexible electronics, solar cells and biomedical instruments.

By using the probe of an atomic force microscope to trigger a local chemical reaction, Jeffrey Mativetsky, assistant professor of physics at Binghamton University, and PhD student Austin Faucett showed that electrically conductive features as small as four nanometers can be patterned into individual graphene oxide sheets. One nanometer is about one hundred thousand times smaller than the width of a human hair.

graphene solar cells
Our approach makes it possible to draw nanoscale electrically-conductive features in atomically-thin insulating sheets with the highest spatial control reported so far,” said Mativetsky. “Unlike standard methods for manipulating the properties of graphene oxide, our process can be implemented under ambient conditions and is environmentally-benign, making it a promising step towards the practical integration of graphene oxide into future technologies.

 

The 2010 Nobel Prize in Physics was awarded for the discovery of graphene, an atomically-thin, two-dimensional carbon lattice with extraordinary electrical, thermal and mechanical properties. Graphene oxide is a closely-related two-dimensional material with certain advantages over graphene, including simple production and processing, and highly tunable properties. For example, by removing some of the oxygen from graphene oxide, the electrically insulating material can be rendered conductive, opening up prospects for use in flexible electronics, sensors, solar cells and biomedical devices.

Source: http://www.sciencedirect.com/
AND
http://www.eurekalert.org/

Super Powerful Batteries To Extend Electric Car Range

Electric vehicles could travel farther and more renewable energy could be stored with lithium-sulfur batteries that use a unique powdery nanomaterial.
Researchers from The Department of Energy’s Pacific Northwest National Laboratory added the powder, a kind of nanomaterial called a metal organic framework, to the battery’s cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Lithium-sulfur batteries have the potential to power tomorrow’s electric vehicles, but they need to last longer after each charge and be able to be repeatedly recharged,” said materials chemist Jie Xiao of the Department of Energy’s Pacific Northwest National Laboratory. “Our metal organic framework may offer a new way to make that happen.
Today’s electric vehicles are typically powered by lithium-ion batteries. But the chemistry of lithium-ion batteries limits how much energy they can store. As a result, electric vehicle drivers are often anxious about how far they can go before needing to charge. One promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass than lithium-ion batteries. This would enable electric vehicles to drive farther on a single charge, as well as help store more renewable energy. The down side of lithium-sulfur batteries, however, is they have a much shorter lifespan because they can’t currently be charged as many times as lithium-ion batteries.

A paper describing the material and its performance was published online April 4 in the American Chemical Society journal Nano Letters.
Source: http://www.pnnl.gov/

New Nanomaterials From CO2

In common perception, carbon dioxide is just a greenhouse gas, one of the major environmental problems of mankind. Carbon dioxide (CO2) is a natural component of Earth’s atmosphere. It is the most abundant carbon-based building block, and is involved in the synthesis of glucose, an energy carrier and building unit of paramount importance for living organisms. For Warsaw chemists CO2 became, however, something else: a key element of reactions allowing for creation of nanomaterials with unprecedented properties. In reaction with carbon dioxide, appropriately designed chemicals allowed researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Faculty of Chemistry, Warsaw University of Technology, (WUT) for production of unprecedented nanomaterials.
The novel materials are highly porous, and in their class they show the most extended, and so the largest surface area, which is of key importance for the envisaged use. Prospective applications include storage of energetically important gases, catalysis or sensing devices. Moreover, microporous fluorescent materials obtained using CO2 emit light with quantum yield significantly higher than those of classical materials used in OLEDs.

carbon dioxyde.2jpgYellow tennis balls symbolise crystal lattice of the microporous material resulting from self-assembly of nanoclusters. Orange balls imitate gas molecules that can adsorb in this material. The presentation is performed
Our research is not confined to fabrication of materials. Its particular importance comes from the fact that it opens a new synthetic route to metal carbonate and metal oxide based nanomaterials, the route where carbon dioxide plays a key role”, notices Prof. Janusz Lewiński (IPC PAS, WUT).
Carbon dioxide has been for years used in industrial synthesis of polymers. On the other hand, there has been very few research papers reporting fabrication of inorganic functional materials using CO2”, says Kamil Sokołowski, a doctoral student in IPC PAS.

The papers reporting accomplishments of Prof. Lewiński’s group, achieved in cooperation with Cambridge University and University of Nottingham, were published, i.a., by journals “Angewandte Chemie” and “Chemical Communications”.
Source: http://www.ichf.edu.pl/

“All-In-One Tool” Janus Against Cancer

University of Cincinnati researchers have developed a unique nanostructure that can, because of its dual-surface structure, serve as an improved “all-in-one tool” against cancer. A unique nanostructure developed by a team of international researchers, including those at the University of Cincinnati, promises improved all-in-one detection, diagnoses and drug-delivery treatment of cancer cells. The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided (Janus) surface and within its porous interior. Because of its unique structure, the nano carrier can do all of the following:
Transport cancer-specific detection nanoparticles and biomarkers to a site within the body, e.g., the breast or the prostate. This promises earlier diagnosis than is possible with today’s tools.
Attach fluorescent marker materials to illuminate specific cancer cells, so that they are easier to locate and find for treatment, whether drug delivery or surgery.
Deliver anti-cancer drugs for pinpoint targeted treatment of cancer cells, which should result in few drug side effects. Currently, a cancer treatment like chemotherapy affects not only cancer cells but healthy cells as well, leading to serious and often debilitating side effects.
nanostructure all-in-one-tool The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided (Janus) surface and within its porous interior

In this effort, we’re using existing basic nano systems, such as carbon nanotubes, graphene, iron oxides, silica, quantum dots and polymeric nano materials in order to create an all-in-one, multidimensional and stable nano carrier that will provide imaging, cell targeting, drug storage and intelligent, controlled drug release,” said UC’s Professor of materials science and engineering Shi, adding that the nano carrier’s promise is currently greatest for cancers that are close to the body’s surface, such as breast and prostate cancer.
Source: http://www.uc.edu/

Nanomaterial Converts Light Into Electricity

A University of Texas at Arlington physics professor has helped create a hybrid nanomaterial that can be used to convert light and thermal energy into electrical current, surpassing earlier methods that used either light or thermal energy, but not both. The team used the nanomaterial to build a prototype thermoelectric generator that they hope can eventually produce milliwatts of power. Paired with microchips, the technology could be used in devices such as self-powering sensors, low-power electronic devices and implantable biomedical micro-devices, UT Arlington associate physics professor Wei Chen said.

If we can convert both light and heat to electricity, the potential is huge for energy production,” Chen said. “By increasing the number of the micro-devices on a chip, this technology might offer a new and efficient platform to complement or even replace current solar cell technology.”
Source: https://www.uta.edu/

Nanomaterials for a new generation of boats

Zyvex Technologies announced today that it has launched a new division, in order to design and build the most advanced maritime platforms in the world. Zyvex Marine shipped this month its first production boat, a lightweight 54' vessel designed with the help of various nanotechnologies.

"Our production facility is closer to rocket science than traditional boat building," said Byron Nutley, Vice President and General Manager of Zyvex Marine. "We are the only company building boats out of nanomaterials. Zyvex Marine designs and builds the most advanced maritime platforms in the world."
Source: http://www.zyvextech.com/