Wood Mixed With Nanoparticles Filters Toxic Water

Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from water.

The team started with a block of linden wood, which they then soaked in palladium – a metal used in cars’ catalytic converters to remove pollutants from the exhaust. In this new filter, the palladium bonds to particles of dye. The wood’s natural channels, that once moved water and nutrients between the leaves and roots, now allow the water to flow past the nanoparticles for efficient removal of the toxic dye particles. The water, tinted with methylene blue, slowly drips through the wood and comes out clear.

VIDEO: Wood filter removes toxic dye from water

This could be used in areas where wastewater contains toxic dye particles,” said Amy Gong, a materials science graduate student, and co-first author of the research paper.

The purpose of the study was to analyze wood via an engineering lens. The researchers did not compare the filter to other types of filters; rather, they wanted to prove that wood can be used to remove impurities.

We are currently working on using a wood filter to remove heavy metals, such as lead and copper, from water,’ said Liangbing Hu, the lead researcher on the project. “We are also interested in scaling up the technology for real industry applications.” Hu is a professor of materials science and a member of the University of Maryland’s Energy Research Center.

Source: http://www.mse.umd.edu/

Nanoparticles From Air Pollution Travel Into Blood To Cause Heart Disease

Inhaled nanoparticles – like those released from vehicle exhausts – can work their way through the lungs and into the bloodstream, potentially raising the risk of heart attack and stroke, according to new research part-funded by the British Heart Foundation. The findings, published today in the journal ACS Nano, build on previous studies that have found tiny particles in air pollution are associated with an increased risk of cardiovascular disease, although the cause remains unproven. However, this research shows for the first time that inhaled nanoparticles can gain access to the blood in healthy individuals and people at risk of stroke. Most worryingly, these nanoparticles tend to build-up in diseased blood vessels where they could worsen coronary heart disease – the cause of a heart attack.

It is not currently possible to measure environmental nanoparticles in the blood. So, researchers from the University of Edinburgh, and the National Institute for Public Health and the Environment in the Netherlands, used a variety of specialist techniques to track the fate of harmless gold nanoparticles breathed in by volunteers. They were able to show that these nanoparticles can migrate from the lungs and into the bloodstream within 24 hours after exposure and were still detectable in the blood three months later. By looking at surgically removed plaques from people at high risk of stroke they were also able to find that the nanoparticles accumulated in the fatty plaques that grow inside blood vessels and cause heart attacks and strokesCardiovascular disease (CVD) – the main forms of which are coronary heart disease and stroke – accounts for 80% of all premature deaths from air pollution.

Blood_Heart_Circulation

It is striking that particles in the air we breathe can get into our blood where they can be carried to different organs of the body. Only a very small proportion of inhaled particles will do this, however, if reactive particles like those in air pollution then reach susceptible areas of the body then even this small number of particles might have serious consequences,”  said Dr Mark Miller, Senior Research Fellow at the University of Edinburgh who led the study.

Source: http://www.cvs.ed.ac.uk/

Frozen Organs Get Life Via Nanotechnology

Scientists are developing a new method to safely bring frozen organs back to life using nanotechnology, an advance that may make donated organs for transplants available to virtually everyone who needs them.

A research team, led by the University of Minnesota, has discovered a groundbreaking process to successfully rewarm large-scale animal heart valves and blood vessels preserved at very low temperatures. The discovery is a major step forward in saving millions of human lives by increasing the availability of organs and tissues for transplantation through the establishment of tissue and organ banks.

heart

This is the first time that anyone has been able to scale up to a larger biological system and demonstrate successful, fast, and uniform warming hundreds of degrees Celsius per minute of preserved tissue without damaging the tissue,” said University of Minnesota mechanical engineering and biomedical engineering professor John Bischof, the senior author of the study.

The researchers manufactured silica-coated nanoparticles that contained iron oxide. When they applied a magnetic field to frozen tissues suffused with the nanoparticles, the nanoparticles generated heat rapidly and uniformly.

Currently, more than 60 percent of the hearts and lungs donated for transplantation must be discarded each year because these tissues cannot be kept on ice for longer than four hours. According to recent estimates, if only half of unused organs were successfully transplanted, transplant waiting lists could be eliminated within two years.

The research was published  in Science Translational Medicine, a peer-reviewed research journal published by the American Association for the Advancement of Sciences (AAAS). The University of Minnesota holds two patents related to this discovery.

Source: https://twin-cities.umn.edu/
AND
http://www.freepressjournal.in/

How To Improve Hair Treatment

In shampoo ads, hair always looks like a shiny, smooth surface. But for physicists peering into microscopes, the hair surface looks much more rugged, as it is made of saw-tooth, ratchet-like scales. In a new theoretical study published in EPJ E, Matthias Radtke and Roland Netz have demonstrated that massaging hair can help to apply drug treatmentencapsulated in nanoparticles trapped in the channels formed around individual hairs – to the hair roots. This is because the oscillatory movement of the massaging directs the way these particles are transported.

hair

This phenomenon was previously discovered in experiments on pork skin samples, which were conducted by Jürgen Lademann, dermatologist at the Charité clinic in Berlin, Germany, and his team. It is also relevant at the microscopic scale, in the transport on microtubules taking place in two directions between the cells within our bodies. By constrast, these findings could also help find ways of preventing harmful nanoparticles from being transported along hairs into the wrong places.

In their work, the authors created a model in which a nanoparticle moves between two asymmetric surfaces. Using standard models of random motion, they moved one surface in an oscillatory fashion relative to the other. They demonstrated by virtue of their corrugated surfaces that channels created between individual hairs and the surrounding skin lead to nanoparticles being sucked into hair follicles if the hair is massaged, thanks to a “ratchetmechanism.

Further, the authors determined optimal transport conditions for different surface structures by varying the driving frequency, particle size, and the amplitude of the corrugated surface. They found that the ratchet effect switches from a flashing to a pushing effect, when the oscillation switches from perpendicular to parallel to the resting surface, respectively. Radtke and Netz also found that nanoparticles’ speed and ability to diffuse are greatly enhanced by the parallel oscillatory motion.

Source: https://www.springer.com/

Understanding The Risks Of Nanotechnology

When radioactive materials were first introduced into society, it took a while before scientists understood the risks. The same is true of nanotechnology today, according to Dr Vladimir Baulin, from University Rovira i Virgili, in Tarragona, Spain, who together with colleagues has shown for the first time how nanoparticles can cross biological – or lipidmembranes in a paper published in the journal Science Advances
Nanotechnology is all around us, in building materials, in toothpaste and in cleaning products. Across Europe, hundreds of institutions are working together to look at how to monitor exposure, manage the risks and advise on what regulations may be needed under the EU’s NanoSafety Cluster.

nanoparticles effects on lipids

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer (main part of a biological membrane). This process was quantified and the time of each step was estimated. The lipid membrane is the ultimate barrier protecting cells from the outside environment and if the nanoparticles can cross this barrier they may go into cells.’

‘Dr Jean-Baptiste Fleury (from Saarland University in Germany) designed a special set-up with two chambers separated by a lipid bilayer, which contained fluorescent lipids (fat molecules). Non-fluorescent nanoparticles were added to only one of the chambers. In this set-up, nanoparticles became visible only when they touched the fluorescent bilayer and exchanged lipids with it. If one sees the fluorescent nanoparticle in the second chamber, this means it was in contact with the bilayer and it crossed the bilayer from one chamber to another. This was the proof. In addition, the process of translocation was quantified and the time of the crossing was estimated as milliseconds.’

All biological objects, biomolecules, proteins that exist in living organisms evolved over billions of years to adapt to each other. Nanoparticles which are synthesised in the laboratory are thus considered by a living organism as something foreign. It is a big challenge to make them compatible and not toxic.’ ‘I would count the applications of nanoparticles as starting from the 1985 Nobel Prize for the discovery of fullerenes (molecules of hollow football-shaped carbon). This was the start of the nanoparticle boom.’

This is becoming urgent because nanoparticles and nanotechnology in general are entering our lives. Now it is possible to synthesise nanomaterials with precise control, fabricate nanostructures on surfaces and do precise tailoring of the properties of nanoparticles.

‘It is becoming quite urgent to understand the exact mechanisms of nanotoxicity and make a classification depending on the mechanism. Radioactivity or X-rays entered our lives the same way. It took time until researchers understood the mechanisms of action on living organisms and the regulations evolved with our understanding.’

gold nanoparticles cross the membrane

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer.

An empirical test of toxicity is that you put nanoparticles into the cells and you see the cells are dead, but you don’t understand what has happened, this is empirical. This is a legitimate tool, but it is not enough to address toxicity. Instead, one could start from the properties of nanoparticles and think about classifying nano-objects based on their physical or chemical properties by trying to predict the effect of a given nanoparticle on a cell or tissue beforehand.

I understand, it may look too ambitious, since there are a lot of tiny details that are not considered at the moment in theoretical models or any classification. However, even if it may not be exact, it can give some guidance and it would be possible to make predictions on how nanoparticles and polymers interact with lipid membranes. For example, in this study we used theoretical modelling to suggest the size and surface properties of the nanoparticle that is able to cross the lipid membrane through a certain pathway and it was observed experimentally.’

Source: https://horizon-magazine.eu/

Nanoparticles And Immunotherapy, Allies To Eradicate Cancer

Some researchers are working to discover new, safer ways to deliver cancer-fighting drugs to tumors without damaging healthy cells. Others are finding ways to boost the body’s own immune system to attack cancer cells. Researchers at Pennsylvania State University   (Penn State) have combined the two approaches by taking biodegradable polymer nanoparticles encapsulated with cancer-fighting drugs and incorporating them into immune cells to create a smart, targeted system to attack cancers of specific types.

new-anti-cancer-drugs

The traditional way to deliver drugs to tumors is to put the drug inside some type of nanoparticle and inject those particles into the bloodstream,” said Jian Yang, professor of biomedical engineering, Penn State. “Because the particles are so small, if they happen to reach the tumor site they have a chance of penetrating through the blood vessel wall because the vasculature of tumors is usually leaky.”

The odds of interacting with cancer cells can be improved by coating the outside of the nanoparticles with antibodies or certain proteins or peptides that will lock onto the cancer cell when they make contact. However, this is still a passive drug delivery technology. If the particle does not go to the tumor, there is no chance for it to bind and deliver the drug.

Yang and Cheng Dong, professor of biomedical engineering, wanted a more active method of sending drugs to the cancer wherever it was located, whether circulating in the blood, the brain, or any of the other organs of the body.

“I have 10 years of working in immunology and cancer,” Dong said. “Jian is more a biomaterials scientist. He knows how to make the nanoparticles biodegradable. He knows how to modify the particles with surface chemistry, to decorate them with peptides or antibodies. His material is naturally fluorescent, so you can track the particles at the same time they are delivering the drug, a process called theranostics that combines therapy and diagnostics. On the other hand, I study the cancer microenvironment, and I have discovered that the microenvironment of the tumor generates kinds of inflammatory signals similar to what would happen if you had an infection.”

Immune cells, which were built to respond to inflammatory signals, will be naturally attracted to the tumor site. This makes immune cells a perfect active delivery system for Yang’s nanoparticles. The same technology is also likely to be effective for infectious or other diseases, as well as for tissue regeneration, Dong said.

Source: http://news.psu.edu/

How To Stop The Spread Of Breast Cancer

A breakthrough technology that harnesses manmade nanoparticles could one day become an important new weapon in the fight against cancer. The technique, which appeared to successfully stop the spread of breast cancer in mice, was unveiled by scientists from the Cold Spring Harbor Laboratory, Dana-Farber Cancer Institute, Stony Brook University, and a host of other research institutions in the journal Science Translational Medicine.

Next-generation cancer fighting therapies on the market today use the body’s immune system to combat tumors, as does experimental technology like CRISPR gene-editing. But the new nanotech has a different target: The cells that actually help cancer metastasize and spread throughout the body. These immune cells, which are meant to ward off infections, create structures called neutrophil extracellular traps (NETs) that help them fight bacteria. But NETs can actually wind up helping spread the cancer by creating tissue openings that cancerous cells can exploit, study co-author Mikala Egeblad explained.

 breast-cancer-cells

A high magnification of an intact neutrophil (yellow arrow) and a NET (white arrow)

So the researchers created a new particle coated with a special enzyme that can kill these cells before the cancer can use them to metastasize. The results were modest, but promising: Three out of the nine mice given the nanoparticle showed no evidence of breast cancer progression, while all mice in the control group continued to worsen.

Wave Of Destruction In Cancer Cells

Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.

Now, the ultrasmall particles – developed more than a dozen years ago by Ulrich Wiesner, the Spencer T. Olin Professor of Engineering at Cornell University – have shown they can do something even better: kill cancer cells without attaching a cytotoxic drug.

The study was led by Michelle Bradbury, director of intraoperative imaging at Memorial Sloan Kettering Cancer Center (MSKCC) and associate professor of radiology at Weill Cornell Medicine, and Michael Overholtzer, cell biologist at MSKCC, in collaboration with Wiesner. Their work details how C dots, administered in large doses and with the tumors in a state of nutrient deprivation, trigger a type of cell death called ferroptosis.

wave-of-destruction-against-cancer

If you had to design a nanoparticle for killing cancer, this would be exactly the way you would do it,” Wiesner said. “The particle is well tolerated in normally healthy tissue, but as soon as you have a tumor, and under very specific conditions, these particles become killers.”

In fact,” Bradbury said, “this is the first time we have shown that the particle has intrinsic therapeutic properties.

Source: http://mediarelations.cornell.edu/

Osteoarthritis: NanoParticles Stop Destruction Of Cartilage

Osteoarthritis is a debilitating condition that affects at least 27 million people in the United States, and at least 12 percent of osteoarthritis cases stem from earlier injuries. Over-the-counter painkillers, such as anti-inflammatory drugs, help reduce pain but do not stop unrelenting cartilage destruction. Consequently, pain related to the condition only gets worse. Now, researchers at Washington University School of Medicine in St. Louis have shown in mice that they can inject nanoparticles into an injured joint and suppress inflammation immediately following an injury, reducing the destruction of cartilage.

osteoarthritisResearchers at Washington University School of Medicine in St. Louis have found that injecting nanoparticles into an injured joint can inhibit the inflammation that contributes to the cartilage damage seen in osteoarthritis. Shown in green is an inflammatory protein in cartilage cells. After nanoparticles are injected, the inflammation is greatly reduced

 

I see a lot of patients with osteoarthritis, and there’s really no treatment,” said senior author Christine Pham, MD, an associate professor of medicine. “We try to treat their symptoms, but even when we inject steroids into an arthritic joint, the drug only remains for up to a few hours, and then it’s cleared. These nanoparticles remain.

Frequently, an osteoarthritis patient has suffered an earlier injury — a torn meniscus or ACL injury in the knee, a fall, car accident or other trauma. The body naturally responds to such injuries in the joints with robust inflammation. Patients typically take drugs such as acetaminophen and ibuprofen, and as pain gets worse, injections of steroids also can provide pain relief, but their effects are short-lived.

In this study, the nanoparticles were injected shortly after an injury, and within 24 hours, the nanoparticles were at work taming inflammation in the joint. But unlike steroid injections that are quickly cleared, the particles remained in cartilage cells in the joints for weeks.

The nanoparticles used in the study are more than 10 times smaller than a red blood cell, which helps them penetrate deeply into tissues. The particles carry a peptide derived from a natural protein called melittin that has been modified to enable it to bind to a molecule called small interfering RNA (siRNA). The melittin delivers siRNA to the damaged joint, interfering with inflammation in cells.

Source: https://source.wustl.edu/

Smart Nanoparticles Fight Multidrug-resistant Cancer

Multidrug resistance (MDR) is the mechanism by which many cancers develop resistance to chemotherapy drugs, resulting in minimal cell death and the expansion of drug-resistant tumors. To address the problem of resistance, researchers have developed nanoparticles that simultaneously deliver chemotherapy drugs to tumors and inhibit the MDR proteins that pump the therapeutic drugs out of the cell. The process is known as chemosensitization, as blocking this resistance renders the tumor highly sensitive to the cancer-killing chemotherapy.

smart nanoparticlesMDR is a major factor in the failure of many chemotherapy drugs. The problem affects the treatment of a wide range of blood cancers and solid tumors, including breast, ovarian, lung, and colon cancers. Researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB), a part of the National Institutes of Health (NIH), are engineering multi-component nanoparticles that significantly enhance the killing of cancer cells.
Success in this medically important endeavor has required a team with a wide range of expertise to engineer nanoparticles that survive the journey to the tumor site, enter the tumor, and successfully perform the multiple functions for chemosensitization”, says Xiaoyuan Chen, Ph.D., who is the Senior Investigator, and has lead the work. His collaborators include scientists and engineers in China at Southeast University, Shenzhen University, Guangxi Medical University, and Shanghai Jiao Tong University, in addition to chemical engineers at the University of Leeds, United Kingdom.

The results of their experiments are reported in recent articles in Scientific Reports and Applied Materials & Interfaces.

Source: https://www.nibib.nih.gov/

How To Stop The Bleeding

Whether  occurs on the battlefield or the highway, saving lives often comes down to stopping the bleeding as quickly as possible. Many methods for controlling external bleeding exist, but at this point, only surgery can halt blood loss inside the body from injury to internal organs. Now, researchers have developed nanoparticles that congregate wherever injury occurs in the body to help it form blood clots, and they’ve validated these particles in test tubes and in vivo.

stopping the bleeding

Nanoparticles (green) help form clots in an injured liver. The researchers added color to the scanning electron microscopy image after it was taken

When you have uncontrolled internal bleeding, that’s when these particles could really make a difference,” says Erin B. Lavik, Sc.D. “Compared to injuries that aren’t treated with the nanoparticles, we can cut bleeding time in half and reduce total blood loss.

Trauma remains a top killer of children and younger adults, and doctors have few options for treating internal bleeding. To address this great need, Lavik’s team developed a nanoparticle that acts as a bridge, binding to activated platelets and helping them join together to form clots. To do this, the nanoparticle is decorated with a molecule that sticks to a glycoprotein found only on the activated platelets.

The researchers have presented their work at the 252nd National Meeting & Exposition of the American Chemical Society (ACS).

Source:  https://www.acs.org/

Gentle Cancer Treatment Using Nanoparticles

Cancer treatments based on laser irradiation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within. Researchers from the Niels Bohr Institute and the Faculty of Health Sciences at the University of Copenhagen  (Denmark) have developed a method that kills cancer cells using nanoparticles and lasers. The treatment has been tested on mice and it has been demonstrated that the cancer tumors are considerably damaged.

mouse with cancer treatment

 
The drawing shows a mouse with a cancerous tumor on its hind leg. The nanoparticles are injected directly into the tumor, which is then flashed with near infrared laser light. Near infrared laser light penetrates through the tissue well and causes no burn damage
 

 

Traditional cancer treatments like radiation and chemotherapy have major side affects, because they not only affect the cancer tumors, but also the healthy parts of the body. A large interdisciplinary research project between physicists at the Niels Bohr Institute and doctors and human biologists at the Panum Institute and Rigshospitalet has developed a new treatment that only affects cancer tumors locally and therefore is much more gentle on the body. The project is called Laser Activated Nanoparticles for Tumor Elimination (LANTERN). The head of the project is Professor Lene Oddershede, a biophysicist and head of the research group Optical Tweezers at the Niels Bohr Institute at the University of Copenhagen in collaboration with Professor Andreas Kjær, head of the Cluster for Molecular Imaging, Panum Institute.

After experimenting with biological membranes, the researchers have now tested the method on living mice. In the experiments, the mice are given cancer tumors of laboratory cultured human cancer cells“The treatment involves injecting tiny nanoparticles directly into the cancer. Then you heat up the nanoparticles from outside using lasers. There is a strong interaction between the nanoparticles and the laser light, which causes the particles to heat up. What then happens is that the heated particles damage or kill the cancer cells,” explains Lene Oddershede.

The results are published in the scientific journal, Scientific Reports.