Cheap, Robust Catalyst Splits Water Into Hydrogen And Oxygen

Splitting water into hydrogen and oxygen to produce clean energy can be simplified with a single catalyst developed by scientists at Rice University and the University of Houston. The electrolytic film produced at Rice and tested at Houston is a three-layer structure of nickel, graphene and a compound of iron, manganese and phosphorus. The foamy nickel gives the film a large surface, the conductive graphene protects the nickel from degrading and the metal phosphide carries out the reactionRice chemist Kenton Whitmire and Houston electrical and computer engineer Jiming Bao and their labs developed the film to overcome barriers that usually make a catalyst good for producing either oxygen or hydrogen, but not both simultaneously.

A catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals like platinum. This electron microscope image shows nickel foam coated with graphene and then the catalytic surface of iron, manganese and phosphorus

Regular metals sometimes oxidize during catalysis,” Whitmire said. “Normally, a hydrogen evolution reaction is done in acid and an oxygen evolution reaction is done in base. We have one material that is stable whether it’s in an acidic or basic solution.

The discovery builds upon the researchers’ creation of a simple oxygen-evolution catalyst revealed earlier this year. In that work, the team grew a catalyst directly on a semiconducting nanorod array that turned sunlight into energy for solar water splittingElectrocatalysis requires two catalysts, a cathode and an anode. When placed in water and charged, hydrogen will form at one electrode and oxygen at the other, and these gases are captured. But the process generally requires costly metals to operate as efficiently as the Rice team’s catalyst.

The standard for hydrogen evolution is platinum,” Whitmire explained. “We’re using Earth-abundant materials — iron, manganese and phosphorus — as opposed to noble metals that are much more expensive.

The robust material is the subject of a paper in Nano Energy.


Omnidirectional Solar Cells Boost Efficiency

In recent years, a complicated discussion over which direction solar cells should facesouth or west — has likely left customers uncertain about the best way to orient their panels. Now researchers from 3 different universities in Taiwan  are attempting to resolve this issue by developing solar cells that can harvest light from almost any angle, and the panels self-clean to boot.

solar farm

Commercial solar panels work best when sunlight hits them at a certain angle. Initially, experts had suggested that solar panels face south to collect the most energy from the sun. But an influential 2013 report by Pecan Street, an energy-research organization, advised that systems tilt westward to maximize efficiency. Further analysis has found that determining the ideal angle is more complicated — in essence, it depends on where you live. And even if customers get the positioning correct, they’re still losing out on prime sunlight because most residential systems can’t move or adjust to the sun’s track across the sky. Jr-Hau He, Kun-Yu Lai fron the National Taiwan University and colleagues wanted to address this shortcoming. The researchers developed a glass coating that incorporates ultrathin nanorods and honeycomb nanowalls that can help underlying solar cells harvest sunlight from multiple angles. The cell efficiency can be boosted by 5.2 to 27.7 percent, depending on the angle of the light, and the efficiency enhancement can be up to 46 percent during long-term use. 

The material also repelled dust and pollution that would otherwise block some rays from getting absorbed and converted to electricity. The new glass coating kept panels working outdoors at optimum levels for six weeks while the efficiency of panels with an unmodified coating dropped over the same period.


How To Kill Intractable Pain

A team of scientists at Kyoto University‘s Institute for Integrated Cell-Material Sciences (iCeMS) in Japan, has developed a novel technique using tiny gold rods to target pain receptors.

Gold nanorods are tiny rods that are 1-100 nanometers wide and long. In comparison, a human hair is 100,000 nanometers wide. The team coated gold nanorods with a special type of protein that transports fat within the body known as a lipoprotein. This allowed the nanorods to bind efficiently to nerve cell membranes bearing a pain receptor called TRPV1 (transient receptor potential vanilloid type 1). Near-infrared light was then applied to the nanorod-coated pain receptors. The nanorods heated up, activating the pain receptors to allow an influx of calcium ions through the membrane. Prolonged activation of TRPV1 is known to subsequently lead to their desensitization, bringing pain relief. Importantly, heating the gold nanorods enabled safe activation of the TRPV1 pain receptors alone, without affecting the membrane in which they lie.

Previous studies had shown that magnetic nanoparticles (tiny particles in the nano-range made out of magnetic materials) are also able to activate TRPV1 receptors by applying a magnetic field. The target cells in this method, however, require genetic modification for it to work. Using lipoprotein-coated gold nanorods does not require genetic modification of the target cells. Also, the nanorods were found to have at least 1,000 times greater efficiency than magnetic nanoparticles in heat generation and in activating TRPV1 receptors.

pain killerThe gold nanorods can be retained in the body for a prolonged period,” says Tatsuya Murakami, the principal investigator of this study. “Local injection of our gold nanorods might enable repetitive and on-demand treatment for people experiencing intractable pain because prior genetic engineering of the target cells is unnecessary.”

The study was published in Angewandte Chemie International Edition on August 6th, 2015.


Self-regenerating Objects Used In Daily Life

When a chair leg breaks or a cell phone shatters, either must be repaired or replaced. But what if these materials could be programmed to regenerate-themselves, replenishing the damaged or missing components, and thereby extend their lifetime and reduce the need for costly repairs? That potential is now possible according to researchers at the University of Pittsburgh Swanson School of Engineering, who have developed computational models to design a new polymer gel that would enable complex materials to regenerate themselves.
Self-Regenerating polymer gel2
Animation of the Self-regenerating Composites

This is one of the holy grails of materials science,” noted Principal investigator Anna C. Balazs, PhD, the Swanson School’s Distinguished Robert v. d. Luft Professor of chemical and petroleum engineering. “While others have developed materials that can mend small defects, there is no published research regarding systems that can regenerate bulk sections of a severed material. This has a tremendous impact on sustainability because you could potentially extend the lifetime of a material by giving it the ability to regrow when damaged.

The article, “Harnessing Interfacially-Active Nanorods to Regenerate Severed Polymer Gels” (DOI: 10.1021/nl403855k), was published November 19 in the American Chemical Society journal Nano Letters.

Rock Music increases 40% Solar Panels Efficiency

Playing pop and rock music improves the performance of solar cells, according to new research from scientists at Queen Mary University of London and Imperial College London. The high frequencies and pitch found in pop and rock music cause vibrations that enhanced energy generation in solar cells containing a cluster of ‘nanorods’, leading to a 40 per cent increase in efficiency of the solar cells. The study has implications for improving energy generation from sunlight, particularly for the development of new, lower cost, printed solar cells. The researchers grew billions of tiny rods (nanorods) made from zinc oxide, then covered them with an active polymer to form a device that converts sunlight into electricity. Using the special properties of the zinc oxide material, the team was able to show that sound levels as low as 75 decibels (equivalent to a typical roadside noise or a printer in an office) could significantly improve the solar cell performance.

Music Wave
We thought the sound waves, which produce random fluctuations, would cancel each other out and so didn’t expect to see any significant overall effect on the power output,” said James Durrant, Professor of Photochemistry at Imperial College London, who co-led the study. “We tried playing music instead of dull flat sounds, as this helped us explore the effect of different pitches. The biggest difference we found was when we played pop music rather than classical, which we now realise is because our acoustic solar cells respond best to the higher pitched sounds present in pop music,” he concluded.


Revolutionary Method To Convert Sunlight into Energy

A new method of harvesting the Sun’s energy is emerging, thanks to scientists at UC Santa Barbara‘s Departments of Chemistry, Chemical Engineering, and Materials. Though still in its infancy, the research promises to convert sunlight into energy using a process based on metals that are more robust than many of the semiconductors used in conventional methods.
When nanostructures, such as nanorods, of certain metals are exposed to visible light, the conduction electrons of the metal can be caused to oscillate collectively, absorbing a great deal of the light,” said Martin Moskovits, professor of chemistry at UCSB.. “This excitation is called a surface plasmon.
It is the first radically new and potentially workable alternative to semiconductor-based solar conversion devices to be developed in the past 70 years or so,” said Moskovits.

From Firefly To Nanotechnology

What do fireflies, nanorods and Christmas lights have in common? Someday, consumers may be able to purchase multicolor strings of light that don’t need electricity or batteries to glow. Scientists in Syracuse University's College of Arts and Sciences found a new way to harness the natural light produced by fireflies (called bioluminescence) using nanoscience. Their breakthrough produces a system that is 20 to 30 times more efficient than those produced during previous experiments.
t’s all about the size and structure of the custom, quantum nanorods, which are produced in the laboratory by Mathew Maye, assistant professor of chemistry in SU’s College of Arts and Sciences; and Rabeka Alam, a chemistry Ph.D. candidate. Maye is also a member of the Syracuse Biomaterials Institute.

Firefly light is one of nature’s best examples of bioluminescence,” Maye says. “The light is extremely bright and efficient. We’ve found a new way to harness biology for nonbiological applications by manipulating the interface between the biological and nonbiological components.