DNA Origami, The New Revolution To Come For Nanotechnology

For the past few decades, some scientists have known the shape of things to come in nanotechnology is tied to the molecule of life, DNA. This burgeoning field is called “DNA origami.” The moniker is borrowed from the art of conjuring up birds, flowers and other shapes by imaginatively folding a single sheet of paper. Similarly, DNA origami scientists are dreaming up a variety of shapes — at a scale one thousand times smaller than a human hair — that they hope will one day revolutionize computing, electronics and medicine. Now, a team of Arizona State University and Harvard scientists has invented a major new advance in DNA nanotechnology. Dubbed “single-stranded origami” (ssOrigami), their new strategy uses one long noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — without even a single knot — into the largest, most complex structures to date. And the strands forming these structures can be made inside living cells or using enzymes in a test tube, allowing scientists the potential to plug-and-play with new designs and functions for nanomedicine: picture tiny nanobots playing doctor and delivering drugs within cells at the site of injury.

A DNA origami with an emoji-like smiley face

I think this is an exciting breakthrough, and a great opportunity for synthetic biology as well,” said Hao Yan, a co-inventor of the technology, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics, and the Milton Glick Professor in the School of Molecular Sciences.

We are always inspired by nature’s designs to make information-carrying molecules that can self-fold into the nanoscale shapes we want to make,” he said.

As proof of concept, they’ve pushed the envelope to make 18 shapes, including emoji-like smiley faces, hearts and triangles, that significantly expand the design studio space and material scalability for so-called, “bottom-upnanotechnology.

Source: https://asunow.asu.edu/

Lenses Provide Nano Scale X-ray Microscopy

Scientists at DESY (Germany) have developed novel lenses that enable X-ray microscopy with record resolution in the nanometre regime. Using new materials, the research team led by DESY scientist Saša Bajt from the Center for Free-Electron Laser Science (CFEL) has perfected the design of specialised X-ray optics and achieved a focus spot size with a diameter of less than ten nanometres. A nanometre is a millionths of a millimetre and is smaller than most virus particles. They successfully used their lenses to image samples of marine plankton.

Modern particle accelerators provide ultra-bright and high-quality X-ray beams. The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation of complex materials. However, taking full advantage of these properties requires highly efficient and almost perfect optics in the X-ray regime. Despite extensive efforts worldwide this turned out to be more difficult than expected, and achieving an X-ray microscope that can resolve features smaller than 10 nm is still a big challenge.


The silica shell of the diatom Actinoptychus senarius, measuring only 0.1 mm across, is revealed in fine detail in this X-ray hologram recorded at 5000-fold magnification with the new lenses. The lenses focused an X-ray beam to a spot of approximately eight nanometres diameter – smaller than a single virus – which then expanded to illuminate the diatom and form the hologram

The new lenses consist of over 10 000 alternating layers of a new material combination, tungsten carbide and silicon carbide. “The selection of the right material pair was critical for the success,” emphasises Bajt. “It does not exclude other material combinations but it is definitely the best we know now.” The resolution of the new lenses is about five times better than achievable with typical state-of-the-art lenses.

We produced the world’s smallest X-ray focus using high efficiency lenses,” says Bajt. The new lenses have an efficiency of more than 80 per cent. This high efficiency is achieved with the layered structures that make up the lens and which act like an artificial crystal to diffract X-rays in a controlled way.

The researchers have reported their work in the journal Light: Science and Applications.

Source: http://www.desy.de/

Artificial Intelligence Chip Analyzes Molecular-level Data In Real Time

Nano Global, an Austin-based molecular data company, today announced that it is developing a chip using intellectual property (IP) from Arm, the world’s leading semiconductor IP company. The technology will help redefine how global health challenges – from superbugs to infectious diseases, and cancer are conquered.

The pioneering system-on-chip (SoC) will yield highly-secure molecular data that can be used in the recognition and analysis of health threats caused by pathogens and other living organisms. Combined with the company’s scientific technology platform, the chip leverages advances in nanotechnology, optics, artificial intelligence (AI), blockchain authentication, and edge computing to access and analyze molecular-level data in real time.

In partnership with Arm, we’re tackling the vast frontier of molecular data to unlock the unlimited potential of this universe,” said Steve Papermaster, Chairman and CEO of Nano Global. “The data our technology can acquire and process will enable us to create a safer and healthier world.”

We believe the technology Nano Global is delivering will be an important step forward in the collective pursuit of care that improves lives through the application of technology,” explained Rene Haas, executive vice president and president of IPG, Arm. “By collaborating with Nano Global, Arm is taking an active role in developing and deploying the technologies that will move us one step closer to solving complex health challenges.”

Additionally, Nano Global will be partnering with several leading institutions, including Baylor College of Medicine and National University of Singapore, on broad research initiatives in clinical, laboratory, and population health environments to accelerate data collection, analysis, and product development.
The initial development of the chip is in process with first delivery expected by 2020. The company is already adding new partners to their platform.

Source: https://nanoglobal.com/

How To Correct Genes That Cause High Cholesterol

U.S. researchers have used nanotechnology plus the powerful CRISPR-Cas9 gene-editing tool to turn off a key cholesterol-related gene in mouse liver cells, an advance that could lead to new ways to correct genes that cause high cholesterol and other liver diseasesNanotechnology is the design and manipulation of materials thousands of times smaller than the width of a human hair.

We’ve shown you can make a nanoparticle that can be used to permanently and specifically edit the DNA in the liver of an adult animal,” said study author Daniel Anderson, an associate professor in chemical engineering at the Massachusetts Institute of Technology.

The study, published  in Nature Biotechnology, holds promise for permanently editing genes such as PCSK9, a cholesterol-regulating gene that is already the target of two drugs made by the biotechnology companies Regeneron Pharmaceuticals and Amgen.

In the study, the scientists were trying to develop a safe and efficient way to deliver the components needed for CRISPR-Cas9, a type of molecular scissors that can selectively trim away defective genes and replace them with new stretches of DNA.

The system consists of a DNA-cutting enzyme called Cas9 and a stretch of RNA that guides the cutting enzyme to the correct spot in the genome. Most teams currently use viruses to deliver CRISPR into cells, an approach that is limited because the immune system can develop antibodies to viruses.

To overcome this, the team chemically modified the CRISPR components to protect them from enzymes in the body that would normally break them down. They then inserted this material into nano-scale fat particles and injected them into mice, where they made their way to liver cells.

In tests targeting the PCSK9 gene, the system proved highly effective, . The PCSK9 protein made by this gene was undetectable in the treated mice, eliminating the gene in more than 80 percent of liver cells, which also experienced a 35 percent drop in total cholesterol, the researchers reported.

High levels of cholesterol can clog arteries, causing reduced blood flow that can lead to a heart attack or stroke.

Source: http://news.mit.edu/

Nanocompounds Enhance Microbial Activity On Soil, Enrich Crops

We live in a world where day to day objects seems to be getting smaller and better. The advent of nanotechnology is a major contributing factor to this phenomenon. Defined as the “engineered construction of matter at the molecular level”, nanotechnology has applications and uses in a multitude of fields. From medicine, electronics, food, clothing, batteries and environment, nanotechnology seems to be pushing the limits of all these fields. Now, scientist have discovered yet another novel application of nanotechnologyfacilitating soil microbial growth.

Indian scientists from the G. B. Pant University of Agriculture and Technology, Pantnangar, Indian Veterinary Research Institute, Izatnagar, and State Council for Science & Technology, Dehradun, studied the impact of three nanocompounds on soil microbial activity and the health of plants being cultivated.

The scientists found that supplementing agricultural soils with nanocompounds like nanoclay, nanochitosan and nanozeolite led to a higher growth of microbial populations in the soil. And such an increased microbial population further led to increased levels of phosphorus, organic carbon and nitrogen in the soils, all of which are known to improve the health of crops being cultivated. Additionally, the scientists also observed increased levels of microbial enzyme activity in the soil, as well as a 50% rise in the total protein content of the soil.

Although nanoclay had the least effect on the soil’s pH, nanozeolite was found to best facilitate the growth of soil microbes. An increase in soil microbial activity along with all the other downstream benefits, caused by these nanocompounds, are all an indicator of enhanced soil health. Therefore, supplementing soils with such nanocompounds could go a long way in improving the agricultural soils, plant health and ultimately, the crop yields of the country.

Source: http://onlinelibrary.wiley.com/

Acupuncture And Nanotechnology Married To Cure Cancer

DGIST (Daegu Gyeongbuk Institute of Science and Technology) in South Korea announced that Professor Su-Il In’s research team from the department of Energy Science and Engineering has presented the possibility of cancer treatment, including colorectal cancer, using acupuncture needles that employ nanotechnology for the first time in the world.

The research team of Professor Su-Il In, through joint research with Dr. Eunjoo Kim of Companion Diagnostics & Medical Technology Research Group at DGIST and Professor Bong-Hyo Lee’s research team from the College of Oriental Medicine at Daegu Haany University, has published a study showing that the molecular biologic indicators related to anticancer effects are changed only by the treatment of acupuncture, which is widely used in oriental medicine.

In oriental medicine, treatment using acupuncture needles has been commonly practiced for thousands of years in the fields of treating musculoskeletal disorders, pain relief, and addiction relief. Recently, it has emerged as a promising treatment for brain diseases, gastrointestinal disorders, nausea, and vomiting, and studies are under way to use acupuncture to treat severe diseases.


Not only that, Professor In’s team discovered that acupuncture needles can be used for cancer treatment which is difficult to treat in modern medicine. In this study, the researchers developed nanoporous needles with microscopic holes in the surface of the needles ranging from nanopores (nm = one billionth of a meter) to micrometers (μm = one millionth of a meter) by applying relatively simple electrochemical nanotechnology. By increasing the surface area of the needle by a factor of ten, the nanoporous needles doubled the electrophysiological signal generation function by needle stimulus.

As a result of AOM administration in rats, the rats receiving periodic acupuncture treatment with nanoporous needles were found to have a much lower incidence of abnormal vascular clusters as a precursor to colorectal cancer in the initiation stage than those in the control group.

Source: https://www.eurekalert.org/

Invisible Glass

If you have ever watched television in anything but total darkness, used a computer while sitting underneath overhead lighting or near a window, or taken a photo outside on a sunny day with your smartphone, you have experienced a major nuisance of modern display screens: glare. Most of today’s electronics devices are equipped with glass or plastic covers for protection against dust, moisture, and other environmental contaminants, but light reflection from these surfaces can make information displayed on the screens difficult to see. Now, scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory — have demonstrated a method for reducing the surface reflections from glass surfaces to nearly zero by etching tiny nanoscale features into them.

Whenever light encounters an abrupt change in refractive index (how much a ray of light bends as it crosses from one material to another, such as between air and glass), a portion of the light is reflected. The nanoscale features have the effect of making the refractive index change gradually from that of air to that of glass, thereby avoiding reflections. The ultra-transparent nanotextured glass is antireflective over a broad wavelength range (the entire visible and near-infrared spectrum) and across a wide range of viewing angles. Reflections are reduced so much that the glass essentially becomes invisible.

This “invisible glass” could do more than improve the user experience for consumer electronic displays. It could enhance the energy-conversion efficiency of solar cells by minimizing the amount of sunlight lost to refection. It could also be a promising alternative to the damage-prone antireflective coatings conventionally used in lasers that emit powerful pulses of light, such as those applied to the manufacture of medical devices and aerospace components.

We’re excited about the possibilities,” said CFN Director Charles Black, corresponding author on the paper published online on October 30 in Applied Physics Letters. “Not only is the performance of these nanostructured materials extremely high, but we’re also implementing ideas from nanoscience in a manner that we believe is conducive to large-scale manufacturing.”

Our role in the CFN is to demonstrate how nanoscience can facilitate the design of new materials with improved properties,” concluded Black. “This work is a great example of that–we’d love to find a partner to help advance these remarkable materials toward technology.”

Source: https://www.eurekalert.org/

Ultra-fast Data Processing At Nanoscale

Advancement in nanoelectronics, which is the use of nanotechnology in electronic components, has been fueled by the ever-increasing need to shrink the size of electronic devices like nanocomputers in a bid to produce smaller, faster and smarter gadgets such as computers, memory storage devices, displays and medical diagnostic tools.

While most advanced electronic devices are powered by photonics – which involves the use of photons to transmit informationphotonic elements are usually large in size and this greatly limits their use in many advanced nanoelectronics systems. Plasmons, which are waves of electrons that move along the surface of a metal after it is struck by photons, holds great promise for disruptive technologies in nanoelectronics. They are comparable to photons in terms of speed (they also travel with the speed of light), and they are much smaller. This unique property of plasmons makes them ideal for integration with nanoelectronics. However, earlier attempts to harness plasmons as information carriers had little success.

Addressing this technological gap, a research team from the National University of Singapore (NUS) has recently invented a novel “converter” that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

This innovative transducer can directly convert electrical signals into plasmonic signals, and vice versa, in a single step. By bridging plasmonics and nanoscale electronics, we can potentially make chips run faster and reduce power losses. Our plasmonic-electronic transducer is about 10,000 times smaller than optical elements. We believe it can be readily integrated into existing technologies and can potentially be used in a wide range of applications in the future,” explained Associate Professor Christian Nijhuis from the Department of Chemistry at the NUS Faculty of Science, who is the leader of the research team behind this breakthrough.

This novel discovery was first reported in the journal Nature Photonics.

Source: http://news.nus.edu.sg/

How To Draw Electricity from the Bloodstream

Men build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of flowing blood in blood vessels into electricity.

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to power mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution—in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the carbon nanotube sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or “fiber-shaped fluidic nanogenerator” (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. “The electricity was derived from the relative movement between the FFNG and the solution,” the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an electricity gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior power conversion efficiency of more than 20%. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

The findings are published in  the journal Angewandte Chemie.

Source: http://newsroom.wiley.com/

China, Global Leader In NanoScience

Mobile phones, computers, cosmetics, bicyclesnanoscience is hiding in so many everyday items, wielding a huge influence on our lives at a microscale level. Scientists and engineers from around the world exchanged new findings and perceptions on nanotechnology at the recent 7th International Conference on Nanoscience and Technology (ChinaNANO 2017) in Beijing last week. China has become a nanotechnology powerhouse, according to a report released at the conference. China’s applied nanoscience research and the industrialization of nanotechnology have been developing steadily, with the number of nano-related patent applications ranking among the top in the world.

According to Bai Chunli, president of the Chinese Academy of Sciences (CAS), China faces new opportunities for nanoscience research and development as it builds the National Center for Nanoscience and Technology  (NCNST) and globally influential national science centers.

We will strengthen the strategic landscape and top-down design for developing nanoscience, which will contribute greatly to the country’s economy and society,” said Bai.

Nanoscience can be defined as the study of the interaction, composition, properties and manufacturing methods of materials at a nanometer scale. At such tiny scales, the physical, chemical and biological properties of materials are different from those at larger scales — often profoundly so.

For example, alloys that are weak or brittle become strong and ductile; compounds that are chemically inert become powerful catalysts. It is estimated that there are more than 1,600 nanotechnology-based consumer products on the market, including lightweight but sturdy tennis rackets, bicycles, suitcases, automobile parts and rechargeable batteries. Nanomaterials are used in hairdryers or straighteners to make them lighter and more durable. The secret of how sunscreens protect skin from sunburn lies in the nanometer-scale titanium dioxide or zinc oxide they contain.

In 2016, the world’s first one-nanometer transistor was created. It was made from carbon nanotubes and molybdenum disulphide, rather than silicon.
Carbon nanotubes or silver nanowires enable touch screens on computers and televisions to be flexible, said Zhu Xing, chief scientist (CNST). Nanotechnology is also having an increasing impact on healthcare, with progress in drug delivery, biomaterials, imaging, diagnostics, active implants and other therapeutic applications. The biggest current concern is the health threats of nanoparticles, which can easily enter body via airways or skin. Construction workers exposed to nanopollutants face increased health risks.

The report was co-produced by Springer Nature, National Center for Nanoscience and Technology (NCNST) and the National Science Library of the Chinese Academy of Sciences (CAS).

Source: http://www.shanghaidaily.com/

Green Solar Panels And Other Colors

Researchers from AMOLF, the University of Amsterdam (UvA) and the Energy Research Centre of the Netherlands (ECN) have developed a technology to create efficient bright green colored solar panels. Arrays of silicon nanoparticles integrated in the front module glass of a silicon heterojunction solar cell scatter a narrow band of the solar spectrum and create a green appearance for a wide range of angles. The remainder of the solar spectrum is efficiently coupled into the solar cell. The current generated by the solar panel is only  reduced by 10%. The realization of efficient colorful solar panels is an important step for the integration of solar panels into the built environment and landscape.
research has much focused on maximizing the electricity yield obtained from solar panels: nowadays, commercial panels have a maximum conversion efficiency from sunlight into electricity of around 22%. To reach such high efficiency, silicon solar cells have been equipped with a textured surface with an antireflection layer to absorb as much light as possible. This creates a dark blue or black appearance of the solar panels.

To create the colored solar panels the researchers have used the effect of Mie scattering, the resonant backscattering of light with a particular color by nanoparticles. They integrated dense arrays of silicon nanocylinders with a diameter of 100 nm in the top module cover slide of a high-efficiency silicon heterojunction solar cell. Due to the resonant nature of the light scattering effect, only the green part of the spectrum is reflected; the other colors are fully coupled into the solar cell. The current generated by the mini solar panel (0,7 x 0,7 cm2)  is only reduced by 10%. The solar panel appears green over a broad range of angles up to 75 degrees. The nanoparticles are fabricated using soft-imprint lithography, a technique that can readily be scaled up to large-area fabrication.
The light scattering effect due to Mie resonances is easily controllable: by changing the size of the nanoparticles the wavelength of the resonant light scattering can be tuned. Following this principle the researchers are now working to realize solar cells in other colors, and on a combination of different colors to create solar panels with a white appearance. For the large-scale application of solar panels, it is essential that their color can be tailored.

The new design was published online in the journal Applied Physics Letters.

Source: https://amolf.nl/

Multi-AntiOxidant Nanoparticles Fight Sepsis

With an incidence of 31.5 million worldwide and a mortality of around 17%, sepsis remains the most common cause of death in hospitalized patients, even in industrialized countries where antibiotics and critical care facilities are readily available. While this disease begins as a serious infection, sepsis‘ life-threatening organ failure is due to an excessive inflammatory response.

By overproducing oxygen free radicals, the immunity of the host itself paradoxically leads to an increase in morbidity and mortality. A team of researchers from Center for Nanoparticle Research, within the  (IBS), with colleagues from the Seoul National University Hospital synthesized nanoparticles with superior antioxidant properties to treat sepsis in rats and mice by removing harmful oxygen radicals and reducing inflammatory responses.

Under normal physiological conditions, oxygen radicals, also called reactive oxygen species (ROS), are created as by-products of several cellular reactions and their concentration is counterbalanced by antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT). However in patients with severe infections, the production of ROS as well as reactive nitrogen species (RNS), increases dramatically, while the body’s antioxidant capacity may be compromised. As a consequence, the ROS and RNS accumulation can lead to damages to DNA, proteins, and lipid membranes.

All major diseases are related to ROS,” explains HYEON Taeghwan, the director of the Center for Nanoparticle Research. “Cellular damage caused by ROS has been found not only in sepsis, but also in cancer, diabetes, cardiovascular disease, atherosclerosis, and neurodegenerative diseases, just to name a few.”

Ceria nanoparticles replace the function of antioxidant enzymes. Cerium trivalent ions (Ce3+) play a decisive role in eliminating ROS. Thanks to the addition of zirconium ions, the scientists could create a new type of nanoparticles, named 7CZ (containing 70% Ce ions and 30% Zr ions), with optimized nanoparticle size and Ce3+ content. The nanoparticles described in this study are smaller, just two nanometers in size. Moreover, they have a higher percent of Ce3+. When tested in mice with sepsis, the survival rate increased 2.5 fold in the 7CZ NP-treated group compared to the control. Scientists found that 7CZ nanoparticles can infiltrate the damaged tissue and act locally at the infection site.

Treating sepsis has been an old challenge for physicians worldwide,” emphasizes LEE Seung-Hoon, professor of department of Neurology, Seoul National University Hospital. “This study shows the possibility of overcoming the limits of modern medicine with nanotechnology.”

This study has been published in the journal Angewandte Chemie.

Source: ,http://www.ibs.re.kr/