Blood Cells Deliver Drugs To Kill Cancer

For the first time, WSU researchers have demonstrated a way to deliver a drug to a tumor by attaching it to a blood cell. The innovation could let doctors target tumors with anticancer drugs that might otherwise damage healthy tissues.

To develop the treatment, a team led by Zhenjia Wang, an assistant professor of pharmaceutical sciences, worked at the microscopic scale using a nanotherapeutic particle so small that 1,000 of them would fit across the width of a hair. By attaching a nanoscale particle to an infection-fighting white blood cell, the team showed they can get a drug past the armor of blood vessels that typically shield a tumor. This has been a major challenge in nanotechnology drug delivery.

Working with colleagues in Spokane and China, Wang implanted a tumor on the flank of a mouse commonly chosen as a model for human diseases. The tumor was exposed to near-infrared light, causing an inflammation that released proteins to attract white blood cells, called neutrophils, into the tumor. The researchers then injected the mouse with gold nanoparticles treated with antibodies that mediate the union of the nanoparticles and neutrophils. When the tumor was exposed to infrared light, the light’s interaction with the gold nanoparticles produced heat that killed the tumor cells, Wang said. In the future, therapists could attach an anticancer drug like doxorubicin to the nanoparticle. This could let them deliver the drug directly to the tumor and avoid damaging nearby tissues, Wang said.

We have developed a new approach to deliver therapeutics into tumors using the white blood cells of our body,” Wang said. “This will be applied to deliver many anticancer drugs, such as doxorubicin, and we hope that it could increase the efficacy of cancer therapies compared to other delivery systems.”

Wang and Chu’s colleagues on the research are postdoctoral researcher Dafeng Chu, Ph.D. student Xinyue Dong, Jingkai Gu of Jilin University and Jingkai Gu of the University of Macau.

The researchers reported on the technique in the latest issue of the journal Advanced Materials.

Source: https://news.wsu.edu/

Smart Windows

Researchers in the Cockrell School of Engineering at the University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers. By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for heating and cooling buildings.

In 2013, chemical engineering professor Delia Milliron and her team became the first to develop dual-band electrochromic materials that blend two materials with distinct optical properties for selective control of visible and heat-producing near-infrared light (NIR). The team now has engineered two new advancements in electrochromic materials — a highly selective cool mode and a warm mode — not thought possible several years ago.

The cool mode material is a major step toward a commercialized product because it enables control of 90 percent of NIR and 80 percent of the visible light from the sun and takes only minutes to switch between modes. The previously reported material could require hours. To achieve this high performance, Milliron and a team, including Cockrell School postdoctoral researcher Jongwook Kim and collaborator Brett Helms of the Lawrence Berkeley National Lab, developed a new nanostructured architecture for electrochromic materials that allows for a cool mode to block near-infrared light while allowing the visible light to shine through. This could help reduce energy costs for cooling buildings and homes during the summer. The researchers reported the new architecture in Nano Letters.

smart windows

We believe our new architected nanocomposite could be seen as a model material, establishing the ideal design for a dual-band electrochromic material,” Milliron said. “This material could be ideal for application as a smart electrochromic window for buildings.”

Source: http://news.utexas.edu/

Laboratories-On-a-Chip

Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering, they say.

In a paper published in the Journal of Applied Physics, from AIP Publishing, Debabrata Sikdar of Monash University in Victoria, Australia, and colleagues describe these and other envisioned applications for their nanocubes in “laboratories-on-a-chip.” The cubes, composed of insulating, rather than conducting or semiconducting materials as were the spherical versions, are easier to fabricate as well as more effective, he says.

Sikdar’s paper presents analysis and simulation of 200-nanometer dielectric (nonconductive) nanoncubes placed in the path of visible and near-infrared light sources. The nanocubes are arranged in a chain, and the space between them can be adjusted to fine-tune the light beam as needed for various applications. As the separation between cubes increases, the angular width of the beam narrows and directionality improves, the researchers say.

nanoantennas
Unidirectional nanoantennas induce directionality to any omnidirectional light emitters like microlasers, nanolasers or spasers, and even quantum dots,” Sikdar said in an interview. Spasers are similar to lasers, but employ minute oscillations of electrons rather than light. Quantum dots are tiny crystals that produce specific colors, based on their size, and are widely used in color televisions. “Analogous to nanoscale spotlights, the cubic antennas focus light with precise control over direction and beam width,” he said.
Source: http://www.aip.org/

Cancer: If It Glows, Cut It Out Or Kill It !

Researchers at Oregon State University (OSU) have developed a new way to selectively insert compounds into cancer cells – a system that will help surgeons identify malignant tissues and then, in combination with phototherapy, kill any remaining cancer cells after a tumor is removed. It’s about as simple as, “If it glows, cut it out.” And if a few malignant cells remain, they’ll soon die.
Technology such as this, scientists said, may have a promising future in the identification and surgical removal of malignant tumors, as well as using near-infrared light therapies that can kill remaining cancer cells, both by mild heating of them and generating reactive oxygen species that can also kill them.
glowing_compound_cancer
Scientists have developed a a new method that sees cancer cells glow, potentially allowing for more accurate surgeries
This is kind of a double attack that could significantly improve the success of cancer surgeries,” said Oleh Taratula, an assistant professor in the OSU College of Pharmacy.
With this approach, cancerous cells and tumors will literally glow and fluoresce when exposed to near-infrared light, giving the surgeon a precise guide about what to remove,” Taratula said. “That same light will activate compounds in the cancer cells that will kill any malignant cells that remain. It’s an exciting new approach to help surgery succeed.”

The findings, published in the journal Nanoscale, have shown remarkable success in laboratory animals. The concept should allow more accurate surgical removal of solid tumors at the same time it eradicates any remaining cancer cells. In laboratory tests, it completely prevented cancer recurrence after phototherapy.

Source: http://oregonstate.edu/

Fighting Cancer: Breakthrough In China

Nanoparticles capable of delivering drugs to specifically targeted cancer cells have been created by a group of researchers from China. The multifunctional ‘smartgold nanoshells could lead to more effective cancer treatments by overcoming a major limitation of modern chemotherapy techniques—the ability to target cancer cells specifically and leave healthy cells untouched.

Small peptides situated on the surface of the nanoshells are the key to the improved targeting ability, guiding the nanoshells to specific cancer cells and attaching to markers on the surface of the cells. The acidic environment of the cancer cells then triggers the offloading of the anticancer drugs.

The specific nanostructure of the gold nanoshells could also allow near-infrared light to be absorbed and converted into heat, opening up the possibility of using the nanoshells in targeted hyperthermia treatment — another form of cancer treatment whereby cancer cells are exposed to slightly higher temperatures than usual to destroy them. The researchers, from East China Normal University and Tongji University, used the gold nanoshells as a building block to which they attached the commonly used anticancer drug Doxorubicin (DOX) and a specific peptide known as A54. The gold nanoshells had diameters of around 200 nanometres— more than 50 times smaller than a red blood cell. When tested on human liver cancer cells, the uptake of the nanoshells that had the A45 peptide was three times greater than the uptake of the control nanoshells without the peptide. There was also a significantly reduced uptake of both types of nanoshell by normal healthy cells. The cancer cells were also treated with the gold nanoshells in a heated water bath and were shown to deliver a notable therapeutic effect compared to just the chemotherapy, demonstrating the potential of the hyperthermia treatment.

The therapeutic activity of most anticancer drugs is limited by their systematic toxicity to proliferating cells, including some normal cells. Overcoming this problem remains a great challenge for chemotherapy. In our study we placed a targeting peptide on the nanoshells, which have been demonstrated to be specific to live cancer cells, improving the targeting ability and drug delivery of the gold nanoshells. The next step of our research is to test the ‘smart’ gold nanoshells in vivo on a liver cancer mouse model. We will also examine how the size of the nanoshells changes their efficacy and how efficient the nanoshells are at converting near-infrared light into heat” said lead author of the study Dr Shunying Liu, from East China Normal University.
The first results of the nanoshells’ performance have been published in IOP Publishing’s journal Biomedical Materials.

Source: http://www.iop.org/

Smart Windows Tune Sunlight And Heat

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a new material to make smart windows even smarter. The material is a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates.

nanocrystals of indium tin oxideNanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between NIR-transmitting and NIR-blocking states with a small jolt of electricity. A synergistic interaction in the region where glassy matrix meets nanocrystal increases the potency of the electrochromic effect

In the US, we spend about a quarter of our total energy on lighting, heating and cooling our buildings,” says Delia Milliron, a chemist at Berkeley Lab’s Molecular Foundry who led this research. “When used as a window coating, our new material can have a major impact on building energy efficiency.”

source: http://newscenter.lbl.gov/

Non-Invasive Treatment For Deep Cancer

PhotoDynamic therapy (PDT) as a non-invasive treatment of cancer is limited by the penetration depth of visible light needed for its activation. A Bioengineering team from the National University of Singapore – NUS – led by Associate Professor Zhang Yong has invented a novel method which will pave the way for PDT to treat deep-seated cancer as well. The researchers also revealed how they have been able to control gene expression – the release of certain proteins in our body – using their nanoparticles which could convert NIR (Near Infrared) light to UV light (visible light needed for effective activation).
NIR is a safe light as opposed to UV light, which could cause damage to cells. NIR can also penetrate deeper into tissues to target tumours.

Near Infrared Light -NIR-, besides being non-toxic, is able to penetrate deeper into our tissues. When NIR reaches the desired places in the body of the patient, the nanoparticles which we have invented, are able to convert the NIR back to UV light (upconversion) to effectively activate the genes in the way desired – by controlling the amount of proteins expressed each time, when this should take place, as well as how long it should take place” explains Prof Zhang.

Source: http://www.eng.nus.edu.sg/ero/announcement/web-zhangyong0912.pdf