Artificial Intelligence Writes Code By Looting

Artificial intelligence (AI) has taught itself to create its own encryption and produced its own universal ‘language. Now it’s writing its own code using similar techniques to humans. A neural network, called DeepCoder, developed by Microsoft and University of Cambridge computer scientists, has learnt how to write programs without a prior knowledge of code.  DeepCoder solved basic challenges of the kind set by programming competitions. This kind of approach could make it much easier for people to build simple programs without knowing how to write code.

deep coder

All of a sudden people could be so much more productive,” says Armando Solar-Lezama at the Massachusetts Institute of Technology, who was not involved in the work. “They could build systems that it [would be] impossible to build before.”

Ultimately, the approach could allow non-coders to simply describe an idea for a program and let the system build it, says Marc Brockschmidt, one of DeepCoder’s creators at Microsoft Research in Cambridge. UK.DeepCoder uses a technique called program synthesis: creating new programs by piecing together lines of code taken from existing software – just like a programmer might. Given a list of inputs and outputs for each code fragment, DeepCoder learned which pieces of code were needed to achieve the desired result overall.

Source: https://www.newscientist.com/

Mimicking The Neural Networks Of The Human Brain

Researchers at the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) at Trinity College in Dublin – Ireland – are pursuing a new nanomaterial-based approach to neural networks that combines work in nanowires and memristors (2-terminal memory devices based on resistance switching effects). They develop a new computing paradigm that mimics the neural networks of the human brain. Both nanowires and memristors are part of the history of research into neural networks and artificial intelligence (AI). Researchers have been investigating the use of nanowires in building electronic meshes on which nerve tissues can be grown; the mesh, they hope, could link nerve cells with electronics. And almost from the time memristors were first isolated and characterized, researchers have been looking at using them in chips that would lead to artificial intelligence.
Professor John Boland, director of CRANN, and his colleagues will be using the research grant to build on their previous work. They already discovered that when electricity—or other stimuli such as chemicals or light—is applied to a random network of nanowires, it generates a chemical reactions at the junctions where the nanowires cross over each other.

nanowire network
This phenomenon is similar to the way the brain works, in that there are bundles of nerves that cross over one another, forming junctions. Over time, the human brain begins to learn which of these junctions is important and discards the rest.
Source: http://www.tcd.ie/