Magnetic Fields To Remotely Control Body Movements

Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities — an achievement that could lead to advances in studying and treating neurological disease. The technique researchers developed is called magneto-thermal stimulation. It gives neuroscientists a powerful new tool: a remote, minimally invasive way to trigger activity deep inside the brain, turning specific cells on and off to study how these changes affect physiology.

Magnetic nanoparticles stimulate neurons deep in the brain to evoke body movements of mice. This image shows a section of a mouse brain with injected magnetic nanoparticles (colored red) covering targeted cells in the striatum

There is a lot of work being done now to map the neuronal circuits that control behavior and emotions,” says lead researcher Arnd Pralle, PhD, a professor of physics in the University at Buffalo College of Arts and Sciences. “How is the computer of our mind working? The technique we have developed could aid this effort greatly.”

Understanding how the brain works — how different parts of the organ communicate with one another and control behavior — is key to developing therapies for diseases that involve the injury or malfunction of specific sets of neurons. Traumatic brain injuries, Parkinson’s disease, dystonia and peripheral paralysis all fall into this category.

The advances reported by Pralle’s team could also aid scientists seeking to treat ailments such as depression and epilepsy directly through brain stimulation.


Brain Cells Found To Control Aging

Scientists at Albert Einstein College of Medicine have found that stem cells in the brain’s hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related diseases and extending lifespan. The hypothalamus was known to regulate important processes including growth, development, reproduction and metabolism. In a 2013 Nature paper, Einstein researchers made the surprising finding that the hypothalamus also regulates aging throughout the body. Now, the scientists have pinpointed the cells in the hypothalamus that control aging: a tiny population of adult neural stem cells, which were known to be responsible for forming new brain neurons.


Our research shows that the number of hypothalamic neural stem cells naturally declines over the life of the animal, and this decline accelerates aging,” says senior author Dongsheng Cai, M.D., Ph.D., professor of molecular pharmacology at Einstein. “But we also found that the effects of this loss are not irreversible. By replenishing these stem cells or the molecules they produce, it’s possible to slow and even reverse various aspects of aging throughout the body.”

The findings have been published online in Nature.


How To Repair Connections Between Nerve Cells

Carbon nanotubes exhibit interesting characteristics rendering them particularly suited to the construction of special hybrid devices – consisting of biological tissue and synthetic material – planned to re-establish connections between nerve cells, for instance at spinal level, lost on account of lesions or trauma. This is the result of a piece of research published on the scientific journal Nanomedicine: Nanotechnology, Biology, and Medicine conducted by a multi-disciplinary team comprising SISSA (International School for Advanced Studies), the University of Trieste, ELETTRA Sincrotrone and two Spanish institutions, Basque Foundation for Science and CIC BiomaGUNE. More specifically, researchers have investigated the possible effects on neurons of the interaction with carbon nanotubes. Scientists have proven that these nanomaterials may regulate the formation of synapses, specialized structures through which the nerve cells communicate, and modulate biological mechanisms, such as the growth of neurons, as part of a self-regulating process. This result, which shows the extent to which the integration between nerve cells and these synthetic structures is stable and efficient, highlights the great potentialities of carbon nanotubes as innovative materials capable of facilitating neuronal regeneration or in order to create a kind of artificial bridge between groups of neurons whose connection has been interrupted. In vivo testing has actually already begun.

Scientists have proven that these nanomaterials may regulate the formation of synapses, specialized structures through which the nerve cells communicate, and modulate biological mechanisms, such as the growth of neurons, as part of a self-regulating process

Interface systems, or, more in general, neuronal prostheses, that enable an effective re-establishment of these connections are under active investigation” explain Laura Ballerini (SISSA) and Maurizio Prato (UniTSCIC BiomaGUNE), coordinating the research project. “The perfect material to build these neural interfaces does not exist, yet the carbon nanotubes we are working on have already proved to have great potentialities. After all, nanomaterials currently represent our best hope for developing innovative strategies in the treatment of spinal cord injuries“. These nanomaterials are used both as scaffolds, a supportive framework for nerve cells, and as means of interfaces releasing those signals that empower nerve cells to communicate with each other.


Neuron Triggers Insulin

Research led by a Johns Hopkins University biologist demonstrates the workings of a biochemical pathway that helps control glucose in the bloodstream, a development that could potentially lead to treatments for diabetes. In a paper published in the current issue of Developmental Cell, Jessica Houtz, a graduate student working with Rejji Kuruvilla in the Department of Biology at Johns Hopkins, shows that a protein that regulates the development of nerve cells also plays a role in prompting cells in the pancreas to release insulin, a hormone that helps to maintain a normal level of blood sugar.

Kuruvilla worked on the project with Johns Hopkins colleagues, Houtz who is the lead author, and Philip Borden and Alexis Ceasrine, all doctoral students in the biology department. Also taking part was Liliana Minichiello of the Department of Pharmacology at the University of Oxford.

The research is potentially relevant to type-2 diabetes, the most common form of the disease, affecting nearly one in ten Americans. With this form of the condition, which can appear at any time of life, the body makes insulin, but is either not releasing enough of it or not using the regulatory chemical efficiently to control blood sugar. In type-1 diabetes, which appears in childhood, an immune response gone awry destroys the body’s ability to produce insulin altogether.

The research on insulin represents a detour for Kuruvilla, whose work has focused on development of the peripheral nervous system. She has studied a group of proteins called neurotrophins, and in particular nerve growth factor [NGF]. These proteins nurture the growth of neurons, the cells of the nervous system.


It has been known for some time that neurons and the pancreatic beta cells, or β-cells, that reside in clusters called islets of Langerhans and produce insulin, have many similarities in molecular makeup and signaling receptors. Receptors are proteins on cell surfaces that respond to particular chemicals and have critical roles in biochemical pathways. Both neurons and pancreatic β-cells have the receptors for neurotrophins.

This project was sparked by seeing NGF receptors present in beta-cells,” said Kuruvilla. The question was, she said: “what are these receptors doing outside the nervous system?”

Turns out that NGF performs a function in the mature pancreas that has nothing to do with supporting neurons. Specifically, the research team traced a chain of biochemical signals showing that elevated blood glucose causes NGF to be released from blood vessels in the pancreas, and that the NGF signal then prompts pancreatic β-cells to relax their rigid cytoskeletal structure, releasing insulin granules into the blood stream. Although β-cells also make NGF, Kuruvilla and her team found that it was the NGF released from the blood vessels that is needed for insulin secretion.

Using genetic manipulation in mice and drugs to block NGF signaling in β-cells, they were able to disrupt distinct elements of this signaling sequence, to show that this classical neuronal pathway is necessary to enhance insulin secretion and glucose tolerance in mice. Importantly, Kuruvilla and colleagues found that NGF’s ability to enhance insulin secretion in response to high glucose also occurs in human β-cells.

It is not yet clear how this system is affected in people with diabetes. “We are very interested in knowing whether aspects of this pathway are disrupted in pre-diabetic individuals,” said Kuruvilla. It would be of interest to determine if NGF or small molecules that bind and activate NGF receptors in the pancreas could be of potential use in the treatment of type-2 diabetes.


How To Map RNA Molecules In The Brain

Cells contain thousands of messenger RNA molecules, which carry copies of DNA’s genetic instructions to the rest of the cell. MIT engineers have now developed a way to visualize these molecules in higher resolution than previously possible in intact tissues, allowing researchers to precisely map the location of RNA throughout cells. Key to the new technique is expanding the tissue before imaging it. By making the sample physically larger, it can be imaged with very high resolution using ordinary microscopes commonly found in research labs.

MIT RNA-Imaging

Now we can image RNA with great spatial precision, thanks to the expansion process, and we also can do it more easily in large intact tissues,” says Ed Boyden, an associate professor of biological engineering and brain and cognitive sciences at MIT, a member of MIT’s Media Lab and McGovern Institute for Brain Research, and the senior author of a paper describing the technique in the July 4 issue of Nature Methods.

Studying the distribution of RNA inside cells could help scientists learn more about how cells control their gene expression and could also allow them to investigate diseases thought to be caused by failure of RNA to move to the correct location.


Artificial Intelligence Mimicks Biological Hierarchy

New research from University of Wyoming and INRIA (France) explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence.

biological hierarchyThe evolution of hierarchy – a simple system of ranking – in biological networks may arise because of the costs associated with network connections

Like large businesses, many biological networks are hierarchically organised, such as gene, protein, neural, and metabolic networks. This means they have separate units that can each be repeatedly divided into smaller and smaller subunits. For example, the human brain has separate areas for motor control and tactile processing, and each of these areas consist of sub-regions that govern different parts of the body.

But why do so many biological networks evolve to be hierarchical? The results of the study suggest that hierarchy evolves not because it produces more efficient networks, but instead because hierarchically wired networks have fewer connections. This is because connections in biological networks are expensive – they have to be built, housed, maintained, etc. – and there is therefore an evolutionary pressure to reduce the number of connections.
The findings not only explain why biological networks are hierarchical, they might also give an explanation for why many man-made systems such as the Internet and road systems are also hierarchical“, comments Jeff Clune, author of the paper.

The study has been published in PLOS Computational Biology.


Brain: Graphene Interacts Safely With Neurons

Researchers from the University of Trieste (Italy) and the University of Cambridge have successfully demonstrated how it is possible to interface graphene – a two-dimensional form of carbon – with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease. Previously, other groups had shown that it is possible to use treated graphene to interact with neurons. However the signal to noise ratio from this interface was very low. By developing methods of working with untreated graphene, the researchers retained the material’s electrical conductivity, making it a significantly better electrode.

graphene interacts in the brain

For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.

The research, published in the journal ACS Nano, was an interdisciplinary collaboration coordinated by the University of Trieste in Italy and the Cambridge Graphene Centre.


NanoComputers That Imitate Human Brain

Making a nanocomputer that learns and remembers like a human brain is a daunting challenge. The complex organ has 86 billion neurons and trillions of connections — or synapses — that can grow stronger or weaker over time. But now scientists from the Tsinghua University (China) report in ACS’ journal Nano Letters the development of a first-of-its-kind synthetic synapse that mimics the plasticity of the real thing, bringing us one step closer to human-like artificial intelligence.


While the brain still holds many secrets, one thing we do know is that the flexibility, or plasticity, of neuronal synapses is a critical feature. In the synapse, many factors, including how many signaling molecules get released and the timing of release, can change. This mutability allows neurons to encode memories, learn and heal themselves. In recent years, researchers have been building artificial neurons and synapses with some success but without the flexibility needed for learning. Tian-Ling Ren and colleagues set out to address that challenge.

The researchers created an artificial synapse out of aluminum oxide and twisted bilayer graphene. By applying different electric voltages to the system, they found they could control the reaction intensity of the receiving “neuron.” The team says their novel dynamic system could aid in the development of biology-inspired electronics capable of learning and self-healing.


How To Repair Nerve Tissue Injuries

Regenerative medicine using stem cells is an increasingly promising approach to treat many types of injury. Transplanted stem cells can differentiate into just about any other kind of cell, including neurons to potentially reconnect a severed spinal cord and repair paralysis.

A variety of agents have been shown to induce transplanted stem cells to differentiate into neurons.  Tufts University biomedical engineers recently published the first report of a promising new way to induce human mesenchymal stem cells (or hMSCs, which are derived from bone marrow) to differentiate into neuron-like cells:  treating them with exosomes.

exosome2Exosomes are very small, hollow particles that are secreted from many types of cells. They contain functional proteins and genetic materials and serve as a vehicle for communication between cells. In the nervous system, exosomes guide the direction of nerve growth, control nerve connection and help regenerate peripheral nerves.

In a series of experiments reported in PLOS ONE in August, the Tufts researchers showed that exosomes from PC12 cells (neuron-like progenitor cells derived from rats) at various stages of their own differentiation could, in turn, cause hMSCs to become neuron-like cells. Exosomes had not previously been studied as a way to induce human stem cell differentiation.

The biomedical engineers also showed that the exosomes contain miRNAs—tiny pieces of RNA that regulate cell behavior and are known to play a role in neuronal differentiation. The researchers hypothesize that the exosomes caused the hMSCs to differentiate by delivering miRNA into the stem cells. The researchers plan future studies to determine the exact mechanism.

“In combination with synthetic nanoparticles that my laboratory is developing, we may ultimately be able to use these identified miRNAs or proteins to make synthetic exosomes, thereby avoiding the need to use any kind of neural progenitor cell line to induce neuron growth,” said the paper’s senior and corresponding author Qiaobing Xu, assistant professor of biomedical engineering at Tufts School of Engineering.


How To Wireless Control Neurons

National Institutes of Health (NIH)-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.

A study showed that scientists can wirelessly determine the path a mouse walks with a press of a button. Researchers at the Washington University School of Medicine, St. Louis, and University of Illinois, Urbana-Champaign, created a remote controlled, next-generation tissue implant that allows neuroscientists to inject drugs and shine lights on neurons deep inside the brains of mice. The revolutionary device is described online in the journal Cell. Its development was partially funded by the National Institutes of Health.

brain implantScientists used soft materials to create a brain implant a tenth the width of a human hair that can wirelessly control neurons with lights and drugs.
“It unplugs a world of possibilities for scientists to learn how brain circuits work in a more natural setting.” said Michael R. Bruchas, Ph.D., associate professor of anesthesiology and neurobiology at Washington University School of Medicine and a senior author of the study.

The Bruchas lab studies circuits that control a variety of disorders including stress, depression, addiction, and pain. Typically, scientists who study these circuits have to choose between injecting drugs through bulky metal tubes and delivering lights through fiber optic cables. Both options require surgery that can damage parts of the brain and introduce experimental conditions that hinder animals’ natural movements.

To address these issues, Jae-Woong Jeong, Ph.D., a bioengineer formerly at the University of Illinois at Urbana-Champaign, worked with Jordan G. McCall, Ph.D., a graduate student in the Bruchas lab, to construct a remote controlled, optofluidic implant. The device is made out of soft materials that are a tenth the diameter of a human hair and can simultaneously deliver drugs and lights.

“We used powerful nano-manufacturing strategies to fabricate an implant that lets us penetrate deep inside the brain with minimal damage,” said John A. Rogers, Ph.D., professor of materials science and engineering, University of Illinois at Urbana-Champaign and a senior author. “Ultra-miniaturized devices like this have tremendous potential for science and medicine.”


Nanoelectronics Injected Directly Into The Brain

It’s a notion that might have come from the pages of a science-fiction novel — an electronic device that can be injected directly into the brain, or other body parts, and treat everything from neurodegenerative disorders to paralysis.

Led by Charles Lieber, Professor of Chemistry at Harvard University,  an international team of researchers has developed a method of fabricating nanoscale electronic scaffolds that can be injected via syringe. The scaffolds can then be connected to devices and used to monitor neural activity, stimulate tissues, or even promote regeneration of neurons.

brain synaptic symphonyI do feel that this has the potential to be revolutionary,” Lieber said. “This opens up a completely new frontier where we can explore the interface between electronic structures and biology. For the past 30 years, people have made incremental improvements in micro-fabrication techniques that have allowed us to make rigid probes smaller and smaller, but no one has addressed this issue — the electronics/cellular interface — at the level at which biology works.”

In an earlier study, scientists in Lieber’s lab demonstrated that cardiac or nerve cells grown with embedded scaffolds could be used to create “cyborgtissue. Researchers were then able to record electrical signals generated by the tissue, and to measure changes in those signals as they administered cardio– or neuro-stimulating drugs.

We were able to demonstrate that we could make this scaffold and culture cells within it, but we didn’t really have an idea how to insert that into pre-existing tissue,” Lieber said. “But if you want to study the brain or develop the tools to explore the brain-machine interface, you need to stick something into the body. When releasing the electronic scaffold completely from the fabrication substrate, we noticed that it was almost invisible and very flexible, like a polymer, and could literally be sucked into a glass needle or pipette. From there, we simply asked, ‘Would it be possible to deliver the mesh electronics by syringe needle injection?’

Though not the first attempt at implanting electronics into the braindeep brain stimulation has been used to treat a variety of disorders for decades — the nanofabricated scaffolds operate on a completely different scale.

Existing techniques are crude relative to the way the brain is wired,” Lieber said. “Whether it’s a silicon probe or flexible polymers … they cause inflammation in the tissue that requires periodically changing the position or the stimulation. But with our injectable electronics, it’s as if it’s not there at all. They are one million times more flexible than any state-of-the-art flexible electronics and have subcellular feature sizes. They’re what I call ‘neuro-philic’ — they actually like to interact with neurons.

The research is reported in Nature Nanotechnology.


Computers That Learn Just As The Brain Does

Scientists working towards mapping and modelling the human brain, have taken the first step by implanting a simplified mouse brain inside its virtual body. This virtual mouse, they say, could one day replace live mice in lab testing – letting them performing mock experiments with the same degree of accuracy. When certain stimuli are applied to the virtual mouse‘s whiskers and skin, for example, the corresponding parts of its brain are activated.

Image converted using ifftoany

Image converted using ifftoany


That allows us at least in a simplified way to have muscles and senses distributed on the body, like touch is distributed across the entire body surface. And simple models of a peripheral nervous system that would allow us to control muscles, and then interface between the brain and these other parts, so that we get basically the whole animal reconstructed,” explains Neurorobotics scientist Marc-Oliver Gewaltig (Ecole Polytechnique Fédérale de Lausanne EPFL), part of the Human Brain Project (HBP) in Switzerland.
Scientists around the world mapped the position of the mouse brain’s 75 million neurons and the connections between different regions. The virtual brain currently consists of just 200,000 neurons – though this will increase along with computing power. Gewaltig says applying the same meticulous methods to the human brain, could lead to computer processors that learn, just as the brain does. In effect, artificial intelligence.
If you look at the neurobotics platform, if you want to control robots in a similar way as organisms control their bodies; that’s also a form of artificial intelligence, and this is probably where we’ll first produce visible outcomes and results“, he added.. The EU-funded Human Brain Project is scheduled to run until 2023. Among its ambitions, they hope to map diseases of the brain to help diagnose people objectively and develop new, truly personalised therapies.