How To Clean Nuclear Waste

Cleaning up radioactive waste is a dangerous job for a human. That’s why researchers at the University of  Manchester are developing robots that could do the job for us. Five years ago, in 2011, a major earthquake and tsunami devastated the east coast of Japan, leading to explosions and subsequent radiation release at the Fukushima Daiichi Nuclear Power Station. The fuel in three of the reactors is believed to have melted, causing a large amount of contaminated water on site.

This is still to be dealt with today – which isn’t too surprising, given that the clean-up of Chernobyl is still underway 30 years after the infamous nuclear accident took place. After the accident at Chernobyl, where an extremely high level of radiation was released, workers had to be sent into areas to which you wouldn’t want to send a human being. For the safety of others, they entered the plant to survey its condition, extinguish fires and manually operate equipment and machinery – all in an environment that endangered their lives. The challenge in dismantling the site at Fukushima is the residual radiation level. In the surrounding areas levels have fallen significantly; in some places (still off limits to former residents) radiation levels actually aren’t very different from natural background levels in certain other parts of the world. But in the reactor itself a person would receive a lethal dose of radiation almost instantly.


At Fukushima, many of the instrumentation systems, such as reactor-water level and reactor pressure, were lost in the incident. This made assessing the integrity of the plant extremely difficult as you couldn’t send people to go and look at it,” explains Professor Barry Lennox, who, alongside Dr Simon Watson at The University of Manchester, is working to find another way of getting access to such dangerous places: by using robots. Professor Lennox and Dr Watson are part of a team working to adapt robots to help clean up Fukushima. They’re developing an underwater remote-operated vehicle – the AVEXIS – to help identify highly radioactive nuclear fuel that is believed to be dispersed underwater in the damaged reactor. The robot is already aiding decommissioning efforts at Sellafield, where it will swim around the ponds storing legacy waste to map and monitor the conditions within them.


How To Create H-D Ceramics In Less Than 1 second

A researcher from North Carolina State University has developed a technique for creating high-density ceramic materials that requires far lower temperatures than current techniques – and takes less than a second, as opposed to hours. Ceramics are used in a wide variety of technologies, including body armor, fuel cells, spark plugs, nuclear rods and superconductors. At issue is a process known as “sintering,” which is when ceramic powders (such as zirconia) are compressed into a desired shape and exposed to high heat until the powder particles are bound together into a solid, but slightly porous, material. But new research from Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State, may revolutionize the sintering process.

This technique allows you to achieve ‘theoretical density,’ meaning it eliminates all of the porosity in the material,” Narayan says. “This increases the strength of the ceramic, as well as improving its optical, magnetic and other properties.”