Urban Farming At Home

Growing your own vegetables and herbs can be a laborious process. Lack of space in urban environments makes it even harder. But this smart garden is bringing the window box into the modern age. Much like Nespresso coffee capsules, users ‘plant’ this soil pod… containing the seeds and all the nutrients which are released in sync with the plant’s life cycle.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This is the plastic container they put the growing substrate in here. It has a wick solution, so basically it starts to drain the water from the water tank, and the lamp does the rest of the job. The lamp imitates daylight time, so it’s 16 hours on and 8 hours off. So far we have tested some 7,000 different plants and each growing substrate is designed specifically for this plant,” says Karel Kask, sales Manager, Click and Grow. Estonia-based ‘Click and Grow‘ says it’s tested up to a thousand lighting solutions to ensure optimal growth. The red and white lights deliver the perfect spectrum they say, speeding up growth by 30 to 50 percent, depending on the plant. Each soil pod provides up to 3 harvests. ‘Click and Grow‘ was inspired by NASA technology used to grow food in space. Here, astronauts aboard the International Space Station sample lettuce they’ve grown.

They’re using quite similar soil-based solutions; so they take the soil substrate into space and grow them already in there. They have an automated watering solution. So it’s quite similar to the solution that we do.The Smart Garden 9, its latest and most advanced model, was displayed at this week’s IFA tech fair in Berlin,” adds Kask.

Could Nanotechnology End Hunger?

Each year, farmers around the globe apply more than 100 million tons of fertilizer to crops, along with more than 800,000 tons of glyphosate, the most commonly used agricultural chemical and the active ingredient in Monsanto’s herbicide Roundup. It’s a quick-and-dirty approach: Plants take up less than half the phosphorus in fertilizer, leaving the rest to flow into waterways, seeding algae blooms that can release toxins and suffocate fish. An estimated 90 percent of the pesticides used on crops dissipates into the air or leaches into groundwater.

child starving

With the global population on pace to swell to more than nine billion by 2050 amid the disruptions of climate change, scientists are racing to boost food production while minimizing collateral damage to the environment. To tackle this huge problem, they’re thinking small — very small, as in nanoparticles a fraction of the diameter of a human hair. Three of the most promising developments deploy nanoparticles that boost the ability of plants to absorb nutrients in the soil, nanocapsules that release a steady supply of pesticides and nanosensors that measure and adjust moisture levels in the soil via automated irrigation systems.

It’s all part of a rise in precision agriculture, which seeks a targeted approach to the use of fertilizer, water and other resources. Recognizing the potential impact of nanotechnology, the U.S. Department of Agriculture’s National Institute of Food and Agriculture (NIFA) beefed up funding between 2011 and 2015, from $10 million to $13.5 million. India, China and Brazil are also joining the latest green revolution. Scientists led by Pratim Biswas and Ramesh Raliya at Washington University in St. Louis have harnessed fungi to synthesize nanofertilizer. When sprayed on mung bean leaves, the zinc oxide nanoparticles increase the activity of three enzymes in the plant that convert phosphorus into a more readily absorbable form. Compared to untreated plants, nanofertilized mung beans absorbed nearly 11 percent more phosphorus and showed 27 percent more growth with a 6 percent increase in yield.

Raliya and his colleagues are also developing nanoparticles that enhance plants’ absorption of sunlight and investigating how nanofertilizers fortify crops with nutrients. In a study earlier this year, they found that zinc oxide and titanium dioxide nanoparticles increased levels of the antioxidant lycopene in tomatoes by up to 113 percent. Next, they want to design nanoparticles that enhance the protein content in peanuts. Along with mung beans, peanuts are a major source of protein in many developing countries.

Others are exploring nanoparticles that protect plants against insects, fungi and weeds. The Connecticut Agricultural Experiment Station and other institutions recently began field trials that use several types of metal oxide nanoparticles on tomato, eggplant, corn, squash and sorghum plants in areas infected with fungi known to threaten crops. Researchers led by Leonardo Fernandes Fraceto, of the Institute of Science and Technology, São Paulo State University, Campus Sorocaba, are designing slow-release nanocapsules that contain two types of fungicides or herbicides to reduce the likelihood of targeted fungi and weeds developing resistance. Scientists at the University of Tehran are conducting similar research. Still others are working on nanocapsules that release plant growth hormones. Existing technology could increase average yields up to threefold in many parts of Africa.