Breathing in Delhi air equivalent to smoking 44 cigarettes a day

It was early on the morning when residents in the Indian capital of Delhi first began to notice the thick white haze that had descended across the city. Initially viewed as a mild irritant, by mid-week its debilitating effects were evident to all, as the city struggled to adapt to the new eerie, martian-like conditions brought about by the pollution.

The World Health Organization considers anything above 25 to be unsafe. That measure is based on the concentration of fine particulate matter, or PM2.5, per cubic meter. The microscopic particles, which are smaller than 2.5 micrometers in diameter, are considered particularly harmful because they are small enough to lodge deep into the lungs and pass into other organs, causing serious health risks.
With visibility severely reduced, trains have been canceled, planes delayed and cars have piled into each other, with multiple traffic accidents reported across the city. On the afternoon, city chiefs closed all public and private schools, requesting instead that the city’s tens of thousands of school-aged children remain indoors; they banned incoming trucks and halted civil construction projects; while they announced new plans to begin implementing a partial ban on private car use as of next week. But as the city woke up to a fourth straight day of heavy pollution, practical considerations were being overtaken by more serious concerns, with journalists and doctors warning residents of the long-term health implications.

Air quality readings in the Indian capital have reached frightening levels in recent days, at one point topping the 1,000 mark on the US embassy air quality index. Across the capital, doctors reported a surge in patients complaining of chest pain, breathlessness and burning eyes. “The number of patients have increased obviously,” said Deepak Rosha, a pulmonologist at Apollo Hospital, one of the largest private hospitals in Delhi. “I don’t think it’s ever been so bad in Delhi. I’m very angry that we’ve had to come to this.”
Breathing in air with a PM2.5 content of between 950 to 1,000 is considered roughly equivalent to smoking 44 cigarettes a day, according to the independent Berkeley Earth science research group.

How To Generate Any Cell Within The Patient’s Own Body

Researchers at The Ohio State University Wexner Medical Center and Ohio State’s College of Engineering have developed a new technology, Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

By using our novel nanochip technology (nanocomputer), injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Researchers studied mice and pigs in these experiments. In the study, researchers were able to reprogram skin cells to become vascular cells in badly injured legs that lacked blood flow. Within one week, active blood vessels appeared in the injured leg, and by the second week, the leg was saved. In lab tests, this technology was also shown to reprogram skin cells in the live body into nerve cells that were injected into brain-injured mice to help them recover from stroke.

This is difficult to imagine, but it is achievable, successfully working about 98 percent of the time. With this technology, we can convert skin cells into elements of any organ with just one touch. This process only takes less than a second and is non-invasive, and then you’re off. The chip does not stay with you, and the reprogramming of the cell starts. Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary,” said Sen, who also is executive director of Ohio State’s Comprehensive Wound Center.

Results of the regenerative medicine study have been published in the journal  Nature Nanotechnology.

Source: https://news.osu.edu/

Frozen Organs Get Life Via Nanotechnology

Scientists are developing a new method to safely bring frozen organs back to life using nanotechnology, an advance that may make donated organs for transplants available to virtually everyone who needs them.

A research team, led by the University of Minnesota, has discovered a groundbreaking process to successfully rewarm large-scale animal heart valves and blood vessels preserved at very low temperatures. The discovery is a major step forward in saving millions of human lives by increasing the availability of organs and tissues for transplantation through the establishment of tissue and organ banks.

heart

This is the first time that anyone has been able to scale up to a larger biological system and demonstrate successful, fast, and uniform warming hundreds of degrees Celsius per minute of preserved tissue without damaging the tissue,” said University of Minnesota mechanical engineering and biomedical engineering professor John Bischof, the senior author of the study.

The researchers manufactured silica-coated nanoparticles that contained iron oxide. When they applied a magnetic field to frozen tissues suffused with the nanoparticles, the nanoparticles generated heat rapidly and uniformly.

Currently, more than 60 percent of the hearts and lungs donated for transplantation must be discarded each year because these tissues cannot be kept on ice for longer than four hours. According to recent estimates, if only half of unused organs were successfully transplanted, transplant waiting lists could be eliminated within two years.

The research was published  in Science Translational Medicine, a peer-reviewed research journal published by the American Association for the Advancement of Sciences (AAAS). The University of Minnesota holds two patents related to this discovery.

Source: https://twin-cities.umn.edu/
AND
http://www.freepressjournal.in/

How To Follow Nanoparticles In The Body

Treating a disease without causing side effects is one of the big promises of nanoparticle technology. But fulfilling it remains a challenge. One of the obstacles is that researchers have a hard time seeing where nanoparticles go once they’re inside various parts of the body. But now one team has developed a way to help overcome this problem — by making tissues and organs clearer in the lab. Their study on mice appears in the journal ACS Nano.

3D mapping of nanoparticle

Scientists are trying to design nanoparticles that deliver a therapeutic cargo directly to a disease site. This specific targeting could help avoid the nasty side effects that patients feel when a drug goes to heathy areas in the body. But barriers, such as blood vessel walls, can divert particles from reaching their intended destination. To get around such obstacles, scientists need a better understanding of how nanoparticles interact with structures inside the body. Current techniques, however, are limited. Warren C. W. Chan and colleagues from the University of Toronto  (Canada) wanted to develop a method to better track where nanoparticles go within tissues.

The researchers injected an acrylamide hydrogel into organs and tissues removed from mice. The gel linked all of the molecules together, except for the lipids, which are responsible for making tissues appear opaque. The lipids easily washed away, leaving the tissues clear but otherwise intact. Using this technique, the researchers could image nanoparticles at a depth of more than 1 millimeter, which is 25 times deeper than existing methods. In addition to helping scientists understand how nanoparticles interact with tumors and organs, the new approach could also contribute to tissue engineering, implant and biosensor applications, say the researchers.

Source: http://inbs.med.utoronto.ca/