Clean Renewable Source Of Hydrogen Fuel For Electric Car

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the form of hydrogen and oxygen.

anode RiceA photo shows an array of titanium dioxide nanorods with an even coating of an iron, manganese and phosphorus catalyst. The combination developed by scientists at Rice University and the University of Houston is a highly efficient photoanode for artificial photosynthesis. Click on the image for a larger version

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight. An oxygen-evolution  catalyst splits water into hydrogen and oxygen. Finding a clean renewable source of hydrogen fuel is the focus of extensive research, but the technology has not yet been commercialized.

The Rice team came up with a way to combine three of the most abundant metalsiron, manganese and phosphorus — into a precursor that can be deposited directly onto any substrate without damaging it. To demonstrate the material, the lab placed the precursor into its custom chemical vapor deposition (CVD) furnace and used it to coat an array of light-absorbing, semiconducting titanium dioxide nanorods. The combined material, called a photoanode, showed excellent stability while reaching a current density of 10 milliamps per square centimeter, the researchers reported.

The results appear in two new studies. The first, on the creation of the films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.

Source: http://news.rice.edu/

Artificial Skin Breathes like Human Skin

A scientist in Chile is using microscopic algae to make skingreen skin. These very small, very simple plants are being used to develop a new artificial skin for humans. The problem with most current artificial skin is that there are no blood vessels – so the man-made skin cannot produce the oxygen it needs to live. But with algae, the skin can breathe through the process of photosynthesis.

artificial-skin-breathesCLICK ON THE IMAGE TO ENJOY THE VIDEO

What we’re basically doing is incorporating micro-algae, which are like microscopic plants into different types of materials. For example, when we apply artificial skin what we have is the characteristics of plants which means when it is lit up it can produce oxygen,” says Tomas Egana from the Chile’s Catholic University, professor at the Institute of biological engineering. And the benefits of the algae could go beyond just a cosmetic improvement. It may help human skin heal itself: “These micro-algae can be genetically modified. So that in addition to producing oxygen they will produce different factors, for example antibiotics, anti-inflammatories and pro-regenerative molecules. So, we are going to have material which is completely artificial and still, which is a structure that has material that is alive.

Professor Egana says the green-colored skin could eventually be used to help patients treat open wounds, tumors and possibly avoid amputations. But patients need not worry about looking like the Incredible Hulk. Egana believes the green color will fade over time as the algae dies. At the moment, animal testing has proven a success. Human trials are expected next year.

Source: http://www.reuters.com/

Electric Car: New Hydrogen Filling Station

A new hydrogen filling station is open to the public in London It creates the gas on site from tap water and renewable energy — a first for the British capital. The station uses electricity generated from renewable sources such as wind power to split water into hydrogen and oxygen. The whole facility can also be switched on and off by the power company to help them balance demand on the grid. Green power company ITM says it helps the problem of what to do with the UK’s excess renewable energy.

Tucson fuel cellCLICK ON THE IMAGE TO ENJOY THE VIDEO

You can re-fuel it in 3 minutes and it will go over three hundred miles (483 km). They are the limitations of a plug-in electric vehicle. You also export the energy from the power grid in a much more effective way,” says Dr Graham Cooley,  ITM Chief Executive.

Refuelling at the site fills the tank with 5kg of pressurised hydrogen which costs around of £10 per kilogram (12,7 euros or 14,5 Dollars), giving a range of around 300 miles. Three different models of hydrogen-powered cars are available in the UK at present, including the Hyundai ix35, though only a handful of people actually drive them.

The issue is dispensing it and delivering it to vehicles which is what we see here today in terms of the new infrastructure being developed. It’s the delivery of the fuel and it’s a relatively straightforward process to do it,”  comments Jon Hunt from the company Toyota.

The technology is still nascent — and, like the cars, hydrogen filling stations remain relatively scarce across Europe. But there are set to be 12 open across the UK by the end of next year.

Source:  https://en.wikipedia.org/

Electric Cars That Eat CO2

An interdisciplinary team of scientists has worked out a way to make electric vehicles that only are not only carbon neutral but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate.

They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere. The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between the laboratory of Assistant Professor of Mechanical Engineering Cary Pint at Vanderbilt University and Professor of Chemistry Stuart Licht at George Washington University. The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Tesla Model 3

This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them,” said Pint. “Our climate-change solution is two fold: (1) to transform the greenhouse gas carbon dioxide into valuable products and (2) to provide greenhouse gas emission-free alternatives to today’s industrial and transportation fossil fuel processes,” adds Licht. “In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies.

The project builds upon a solar thermal electrochemical process (STEP) that can create carbon nanofibers from ambient carbon dioxide developed by the Licht group and described in the journal Nano Letters last August. STEP uses solar energy to provide both the electrical and thermal energy necessary to break down carbon dioxide into carbon and oxygen and to produce carbon nanotubes that are stable, flexible, conductive and stronger than steel.

The recipe for converting carbon dioxide gas into batteries is described in the paper titled “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes” published online on Mar. 2 by the journal ACS Central Science.

Source: http://news.vanderbilt.edu/

2D Nanomaterials Boost Computers Speed

University of Utah engineers have discovered a new kind of 2D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.

The semiconductor, made of the elements tin and oxygen, or tin monoxide (SnO), is a layer of 2D material only one atom thick, allowing electrical charges to move through it much faster than conventional 3D materials such as silicon. This material could be used in transistors, the lifeblood of all electronic devices such as computer processors and graphics processors in desktop computers and mobile devices. The material was discovered by a team led by University of Utah materials science and engineering associate professor Ashutosh Tiwari.

material

Transistors and other components used in electronic devices are currently made of 3D materials such as silicon and consist of multiple layers on a glass substrate. But the downside to 3D materials is that electrons bounce around inside the layers in all directions.

The benefit of 2D materials, which is an exciting new research field that has opened up only about five years ago, is that the material is made of one layer the thickness of just one or two atoms. Consequently, the electronscan only move in one layer so it’s much faster,” says Tiwari.

While researchers in this field have recently discovered new types of 2D material such as graphene, molybdenun disulfide and borophene. In order to create an electronic device, however, you need semiconductor material that allows the movement of both negative electrons and positive charges known as “holes.” The tin monoxide material discovered by Tiwari and his team is the first stable P-type 2D semiconductor material ever in existence.
Transistors made with Tiwari’s semiconducting material could lead to computers and smartphones that are more than 100 times faster than regular devices.

A paper describing the research was published online in the journal, Advanced Electronic Materials.

Source: http://unews.utah.edu/

Nano-Reactor Produces Hydrogen

Scientists at Indiana University (IU) have created a highly efficient biomaterial that catalyzes the formation of hydrogen — one half of the “holy grail” of splitting H2O to make hydrogen and oxygen for fueling cheap and efficient cars that run on water. A modified enzyme that gains strength from being protected within the protein shell — or “caps id” — of a bacterial virus, this new material is 150 times more efficient than the unaltered form of the enzyme.

indianaP22-Hyd, a new biomaterial created by encapsulating a hydrogen-producing enzyme within a virus shell.

Essentially, we’ve taken a virus’s ability to self-assemble myriad genetic building blocks and incorporated a very fragile and sensitive enzyme with the remarkable property of taking in protons and spitting out hydrogen gas,” said Trevor Douglas, Professor of Chemistry in the IU Bloomington College of Arts and Sciences’ Department of Chemistry, who led the study “The end result is a virus-like particle that behaves the same as a highly sophisticated material that catalyzes the production of hydrogen.”

The process of creating tahe material was recently reported in “Self-assembling biomolecular catalysts for hydrogen production” in the journal Nature Chemistry.

Source: http://news.indiana.edu/

EV: A Thin Film That Produces Oxygen and Hydrogen

A cobalt-based thin film serves double duty as a new catalyst that produces both hydrogen and oxygen from water to feed fuel cells, according to scientists at Rice University. This discovery may lower the cost of future hydrogen electric car.  The inexpensive, highly porous material invented by the Rice lab of chemist James Tour may have advantages as a catalyst for the production of hydrogen via water electrolysis. A single film far thinner than a hair can be used as both the anode and cathode in an electrolysis device.

The researchers led by Rice postdoctoral researcher Yang Yang reported their discovery  in Advanced Materials.

They determined their cobalt film is much better at producing hydrogen than most state-of-the-art materials and is competitive with (and much cheaper than) commercial platinum catalysts. They reported the catalyst also produced an oxygen evolution reaction comparable to current materials.

CATALYST

A side view of a porous cobalt phosphide/phosphate thin film created at Rice University. The robust film could replace expensive metals like platinum in water-electrolysis devices that produce hydrogen and oxygen for fuel cells. The scale bar equals 500 nanometers.

It is amazing that in water-splitting, the same material can make both hydrogen and oxygen,” Tour said. “Usually materials make one or the other, but not both.”

The researchers suggested applying alternating current from wind or solar energy sources to cobalt-based electrolysis could be an environmentally friendly source of hydrogen and oxygen.

Source: http://news.rice.edu/

Cheap Batteries For Hydrogen Electric Car

Electrochemical devices are crucial to a green energy revolution in which clean alternatives replace carbon-based fuels. This revolution requires conversion systems that produce hydrogen from water or rechargeable batteries that can store clean energy in cars. Now, Singapore-based researchers have developed improved catalysts as electrodes for efficient and more durable green energy devices.

Electrochemical devices such as batteries use chemical reactions to create and store energy. One of the cleanest reactions is the conversion from water into oxygen and hydrogen. Using energy from the sun, water can be converted into those two elements, which then store this solar energy in gaseous form. Burning hydrogen leads to a chemical explosion that produces water.

For technical applications, the conversion from hydrogen and oxygen into water is done in fuel cells, while some rechargeable batteries use chemical reactions based on oxygen to store and release energy. A crucial element for both types of devices is the cathode, which is the electrical contact where these reactions take place. The research team, which included Zhaolin Liu and colleagues from the A*STAR Institute of Materials Research and Engineering with colleagues from Nanyang Technological University and the National University of Singapore, combined nanometer-sized crystals of this material with sheets of carbon or carbon nanotubes.

oxyde-carbon compositesOxide/carbon composites could power green metal-air batteries

The cost is estimated to be tens of times cheaper than the platinum/carbon composites used at present,” says Liu. Because platinum is expensive, intensive efforts are being made to find alternative materials for batteries.

Source:: http://www.research.a-star.edu.sg/

Electric Car: How To Produce Cheap Hydrogen

Rutgers University researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel – a fuel that could replace expensive and environmentally harmful fossil fuels.

The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules into hydrogen and oxygen. The Rutgers technology is also far more efficient than less-expensive catalysts investigated to-date.
Hydrogen has long been expected to play a vital role in our future energy landscapes by mitigating, if not completely eliminating, our reliance on fossil fuels,” said Tewodros (Teddy) Asefa, associate professor of chemistry and chemical biology in the School of Arts and Sciences. “We have developed a sustainable chemical catalyst that, we hope with the right industry partner, can bring this vision to life”. He and his colleagues based their new catalyst on carbon nanotubesone-atom-thick sheets of carbon rolled into tubes 10,000 times thinner than a human hair.
carbon nanotubes to produce hydrogen

A new technology based on carbon nanotubes promises commercially viable hydrogen production from water

Finding ways to make electrolysis reactions commercially viable is important because processes that make hydrogen today start with methane – itself a fossil fuel. The need to consume fossil fuel therefore negates current claims that hydrogen is a “green” fuel.
Source: http://news.rutgers.edu

Low Cost Water Splitter For Hydrogen Fuel Cells

Stanford University scientists have created a silicon-based water splitter that is both low-cost and corrosion-free. The novel device – a silicon semiconductor coated in an ultrathin layer of nickel – could help pave the way for large-scale production of clean hydrogen fuel from sunlight, according to the scientists.

splitting waterThis image shows two electrodes connected via an external voltage source splitting water into oxygen (O2) and hydrogen (H2). The illuminated silicon electrode (left) uses light energy to assist in the water-splitting process and is protected from the surrounding electrolyte by a 2-nm film of nickel

Solar cells only work when the sun is shining,” said study co-author Hongjie Dai, a professor of chemistry at Stanford. “When there’s no sunlight, utilities often have to rely on electricity from conventional power plants that run on coal or natural gas.”
A greener solution, Dai explained, is to supplement the solar cells with hydrogen-powered fuel cells that generate electricity at night or when demand is especially high.
The results are published in the Nov. 15 issue of the journal Science.
Source: http://news.stanford.edu/