Magnetic Fields To Remotely Control Body Movements

Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities — an achievement that could lead to advances in studying and treating neurological disease. The technique researchers developed is called magneto-thermal stimulation. It gives neuroscientists a powerful new tool: a remote, minimally invasive way to trigger activity deep inside the brain, turning specific cells on and off to study how these changes affect physiology.

Magnetic nanoparticles stimulate neurons deep in the brain to evoke body movements of mice. This image shows a section of a mouse brain with injected magnetic nanoparticles (colored red) covering targeted cells in the striatum

There is a lot of work being done now to map the neuronal circuits that control behavior and emotions,” says lead researcher Arnd Pralle, PhD, a professor of physics in the University at Buffalo College of Arts and Sciences. “How is the computer of our mind working? The technique we have developed could aid this effort greatly.”

Understanding how the brain works — how different parts of the organ communicate with one another and control behavior — is key to developing therapies for diseases that involve the injury or malfunction of specific sets of neurons. Traumatic brain injuries, Parkinson’s disease, dystonia and peripheral paralysis all fall into this category.

The advances reported by Pralle’s team could also aid scientists seeking to treat ailments such as depression and epilepsy directly through brain stimulation.

Source: http://www.buffalo.edu/

A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.

Source: http://www.wired.co.uk/

A ”NaNose” Device Identifies 17 Types Of Diseases With A Single Sniff

The future of early diagnoses of disease could be this simple, according to a team of researchers in Israel. The ‘NaNose‘ as they call it can differentiate between 17 types of diseases with a single sniff identifying so-called smelly compounds in anything from cancers to Parkinson’s.

nanose2CLICK ON THE IMAGE TO ENJOY THE VIDEO

Indeed, what we have found in our most recent research in this regard, that 17 types of disease have 13 common compounds that are found in all different types of disease, but the mixture of the compounds and the composition of these compounds changes from one disease to another disease. And this is what is really unique and what really we expect to see and utilize in order to make the diagnosis from exhaled breat,” says Professor Hossam  Haick ftom the Institute of Technology- Technion.

The NaNose uses “artificially intelligent nanoarraysensors to analyze the data obtained from receptors that “smell” the patient’s breath.

So our main idea is to try an imitate what’s going on in nature. So like we can take a canine, a dog and train it to scent the smell of drugs, of explosives or a missing person, we are trying to do it artificially. And we can do that by using these nano-materials and we build these nano material-based sensors. And of course there are many advantages and one of them of course is going all the way from sensors big as this to really small devices like this that have that have on them eight sensors and which can be incorporated to systems like this, or even smaller,” explains Doctor Yoav Broza from Technion .

Several companies are now trying to commercialize the technology – and encourage its use in healthcare systems… or see it incorporated into your smartphone.

Source: http://www.reuters.com/

How To Prevent Alzheimer’s

Researchers from Imperial College London (ICL) have prevented the development of Alzheimer’s disease in mice by using a virus to deliver a specific gene into the brain. The early-stage findings by scientists open avenues for potential new treatments for the disease. In the study, published in the journal Proceedings of the National Academy of Sciences, the team used a type of modified virus to deliver a gene to brain cells.

Previous studies by the same team suggest this gene, called PGC1 – alpha, may prevent the formation of a protein called amyloid-beta peptide in cells in the lab. Amyloid-beta peptide is the main component of amyloid plaques, the sticky clumps of protein found in the brains of people with Alzheimer’s disease. These plaques are thought to trigger the death of brain cellsAlzheimer’s disease affects around 520,000 people in the UK. Symptoms include memory loss, confusion, and change in mood or personality. Worldwide 47.5 million people are affected by dementia – of which Alzheimer’s is the most common form. There is no cure, although current drugs can help treat the symptoms of the disease.

Dr Magdalena Sastre, senior author of the research from the Department of Medicine at Imperial, hopes the new findings may one day provide a method of preventing the disease, or halting it in the early stages.

alzheimer_s_disease_vs_normal-spl

She explained: “Although these findings are very early they suggest this gene therapy may have potential therapeutic use for patients. There are many hurdles to overcome, and at the moment the only way to deliver the gene is via an injection directly into the brain. However this proof of concept study shows this approach warrants further investigation.”

The modified virus used in the experiments was called a lentivirus vector, and is commonly used in gene therapy explained Professor Nicholas Mazarakis, co-author of the study from the Department of Medicine: “Scientists harness the way lentivirus infects cells to produce a modified version of the virus, that delivers genes into specific cells. It is being used in experiments to treat a range of conditions from arthritis to cancer. We have previously successfully used the lentivirus vector in clinical trials to deliver genes into the brains of Parkinson’s disease patients.

Source: http://www3.imperial.ac.uk/

Eye Test detects Parkinson’s Before Symptoms develop

A newly developed eye test offers the hope of far earlier diagnosis of Parkinson’s disease, a devastating condition usually discovered too late in patients for effective treatment.
This new eye test could detect Parkinson’s disease before symptoms develop. Developed at the University College London (UCL), Institute of Ophthalmology it looks for changes in patients’ retinas before brain alteration occurs. Researchers induced Parkinson’s in rats by injecting them with a chemical called rotenone. Having observed retinal changes, they treated the rodents with a new version ofRosiglitaz anti-diabetic drug Rosiglitazone.

eyes2CLICK ON THE IMAGE TO ENJOY THE VIDEO

The preliminary results were that we were able to see evidence of Parkinson’s in the retina well in advance compared to the Parkinsonian events in the brain. Furthermore, by injecting the Rosiglitazone in these rats we were able to see a rescue effect of Rosiglitazone in this model, first in the eye and then in the brain“, says Dr. Eduardo Normando, UCL constant opthalmologist. Human clinical trials will begin soon. Earlier diagnosis could have a major impact on future patient outcomes

If you’ve seen the effects in the retina well before you see those effects in the brain then actually you could shorten the length of clinical trials and you could use this as a very good marker of treatment success. But in the long run what we think is that it could be a way of trying to see if patients are ever going to get Parkinson’s disease“, adds UCL Professor of glaucoma and retinal neurodegeneration, Francesca Cordeiro.

The degenerative condition affects 1 in 500 people, causing muscle stiffness, slowness of movement, tremors and a reduced quality of life. Symptoms typically become apparent once more than 70 percent of the brain’s dopamine-producing cells have been destroyed.

Source: http://www.reuters.com/

Cheap Biosensor Detects Alzheimer’s, Cancer, Parkinson’s

A biosensor developed by researchers at the National Nanotechnology Laboratory (LNNano) in Campinas, São Paulo State, Brazil, has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.

biosensor LNNano

The device is basically a single-layer organic nanometer-scale transistor on a glass slide. It contains the reduced form of the peptide glutathione (GSH), which reacts in a specific way when it comes into contact with the enzyme glutathione S-transferase (GST), linked to Parkinson’s, Alzheimer’s and breast cancer, among other diseases. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

The project focuses on the development of point-of-care devices by researchers in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis.

Platforms like this one can be deployed to diagnose complex diseases quickly, safely and relatively cheaply, using nanometer-scale systems to identify molecules of interest in the material analyzed,” explained Carlos Cesar Bof Bufon, Head of LNNano’s Functional Devices & Systems Lab (DSF) and a member of the research team for the project, whose principal investigator is Lauro Kubota, a professor at the University of Campinas’s Chemistry Institute (IQ-UNICAMP).

In addition to portability and low cost, the advantages of the nanometric biosensor include its sensitivity in detecting molecules, according to Bufon.

This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example,” he explained. “The device can detect such molecules even when they’re present at very low levels in the examined material, thanks to its nanometric sensitivity.” A nanometer (nm) is one billionth of a meter (10-9 meter), or one millionth of a millimeter.

The system can be adapted to detect other substances, such as molecules linked to different diseases and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the chemicals targeted by the test, which are known as analytes.

Source: http://www.eurekalert.org/

Brain: Graphene Interacts Safely With Neurons

Researchers from the University of Trieste (Italy) and the University of Cambridge have successfully demonstrated how it is possible to interface graphene – a two-dimensional form of carbon – with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease. Previously, other groups had shown that it is possible to use treated graphene to interact with neurons. However the signal to noise ratio from this interface was very low. By developing methods of working with untreated graphene, the researchers retained the material’s electrical conductivity, making it a significantly better electrode.

graphene interacts in the brain

For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.

The research, published in the journal ACS Nano, was an interdisciplinary collaboration coordinated by the University of Trieste in Italy and the Cambridge Graphene Centre.

Source: http://www.cam.ac.uk/

Walking Again After Spinal Cord Injuries

Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL)  in Switzerland proved in 2012 that electrical-chemical stimulation of the spinal cord could restore lower body movement in paralysed rats. Now they’re a step closer to making this a possibility for humans with spinal injuries. By applying so-called ‘surface implants‘ directly to the spinal cord, any movement or stretching of the nerve tissues could cause inflammation and, ultimately, rejection of the implant. This is their solution. Called e-Dura, it’s a soft and stretchy implant that can be bent and deformed similar to the living tissue that surrounds it.

EPFL SPINAL CORD REPAIRCLICK ON THE IMAGE TO ENJOY THE VIDEO

One important aspect of our studies is that we design the implant so that it could, one day, be used in a therapeutical context. So we wanted an implant that could stay for quite some time in vivo without inducing any detrimental effect. And so the first question we asked was: is soft making a difference?“, said Professor Stephanie Lacour, co-author of the study at EPFL.
E-Dura has a small tube through which neuro-transmitting drugs can be administered to the injured tissue to reanimate nerve cells. Built by on-site engineers, the device is made from silicon substrate covered with stretchable gold electric conducting tracks. Researchers found that when the prototype was implanted into rats’ spinal cords it caused neither damage nor rejection, even after two months. They concede, however, there is one significant hurdle to overcome.

There’s no link at the moment between the brain; so the motor command between the brain and the actual stimulation pattern on the spinal cord. So we now also have to find a way to link the two so that the person will think about moving and, indeed, the stimulation will be synchronised“, comments Prof. Lacour.
The team has set its sights on human clinical trails, and sees potential new therapies for e-Dura to treat conditions such as epilepsy, Parkinson’s disease and pain management.

Source: http://actu.epfl.ch/

Alzheimer’s: Amazing News From The Nano World

Alzheimer substance, amyloid, may be the nanomaterial of tomorrow. Amyloid protein causes diseases like Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob . Researchers from Chalmers University of Technology recently unveiled an unexpected discovery about amyloid in an article published in the Nature Photonics journal. Amyloids are misfolded variants of proteins that occur naturally in the body. The researchers have now shown that the misfolded variants react to multiphoton irradiation, a type of laser effect, whereas the healthy proteins do not.

The discovery could be useful in a variety of fields. Not only can it lead to new methods to detect and treat the brain diseases that amyloid causes, amyloid may also be used as a building block for future nanomaterials.
Amyloid proteinAmyloid protein causes diseases like Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease. But amyloid also carries unique characteristics that may lead to the development of new composite materials for the nano processors and data storage of tomorrow, and even make objects invisible
It is possible to create these protein aggregates artificially in a laboratory”, says Piotr Hanczyc, one of the researchers who made the discovery. “By combining them with other molecules, one could create materials with unique characteristics.
The amyloid aggregates are as hard and rigid as steel. The difference is that steel is much heavier and has defined material properties, whereas amyloids can be tuned for specific purposes. By attaching a material’s molecules to the dense amyloid, its characteristics change.
“This was already known, but what has not been known is that the amyloids react to multiphoton irradiation”
”, says Piotr Hanczyc. “This opens up new possibilities to also change the nature of the material attached to the amyloids“.
Source: http://www.mynewsdesk.com/

Targeting Parkinson’s Disease At Its Roots

Researchers at Northeastern University in Boston have developed a gene therapy approach that may one day stop Parkinson’s disease (PD) in it tracks, preventing disease progression and reversing its symptoms. Each year, 60,000 adults are newly diag­nosed with Parkinson’s dis­ease, a neu­rode­gen­er­a­tive dis­order that causes a slew of symp­toms, including tremors, slowed move­ments, and changes in speech. The drugs cur­rently avail­able to treat PD patients help them regain some of the motor con­trol lost through the dis­ease, but don’t treat the under­lying cause, said Bar­bara Waszczak, a pro­fessor of phar­ma­ceu­tical sci­ences in the Bouvé Col­lege of Health Sci­ences.

parkinson's
Parkinson’s is caused by the death of dopamine neu­rons in a key motor area of the brain called the sub­stantia nigra,” said Waszczak. If you want to treat PD at its roots, she added, then you have to stop the death of these neural cells. In research reported ear­lier this week at the Exper­i­mental Biology 2013 con­fer­ence in Boston, Waszczak and grad­uate stu­dent Brendan Harmon pro­posed a treat­ment approach that does exactly that. What’s more, the method is simple and easy to use.“If we can get at it in the early stages of the dis­ease, when patients are just starting to develop symp­toms, then we might be able to stop the dis­ease from get­ting worse or at least delay the onset of severe symp­toms,” Waszczak explained.

Source: http://www.northeastern.edu/
AND
http://www.eurekalert.org/

Video Games for Parkinson’s patients

Improve balance and overall mobility for people suffering from Parkinson's disease? Now it is possible with taylor made videogames on existing commercial platform

Click to enjoy the video demonstration
 Esther Smits, Movement scientist at the University Medical Centre Groningen – Netherlands, explains: “We have to measure muscle activity so we can see what happens in muscles when volunteers are moving their arms to make the drawings.
Rutger Zietsma, coordinator of the project, adds: “We have built on previous techniques for recording handwriting and motion. Starting with digitising tablets for recording handwriting, also using motion analysis systems to look at upper body motion and limb motion. Then we built a pen system with  different sensors and data analysis techniques. We developed algorithms that would automatically analyse motion, the control behind that motion in the nervous systems of the users”.
Finally, researchers then developed tailor made video games on existing commercial platforms. Games allow Parkinson’s patients to improve balance and overall mobility.

Source: http://ec.europa.eu/research/infocentre/article_en.cfm?id=/research/star/index
_en.cfm?p=124&calledby=infocentre&item=Infocentre&artid=24474