Ultra-Thin Memory Storage For Nanocomputer

Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential — until now. A team of electrical engineers at The University of Texas at Austin, in collaboration with Peking University scientists, has developed the thinnest memory storage device with dense memory capacity, paving the way for faster, smaller and smarter computer chips for everything from consumer electronics to big data to brain-inspired computing.

For a long time, the consensus was that it wasn’t possible to make memory devices from materials that were only one atomic layer thick,” said Deji Akinwande, associate professor in the Cockrell School of Engineering’s Department of Electrical and Computer Engineering. “With our new ‘atomristors,’ we have shown it is indeed possible.”

Made from 2-D nanomaterials, the “atomristors” — a term Akinwande coined — improve upon memristors, an emerging memory storage technology with lower memory scalability. He and his team published their findings in the January issue of Nano Letters.

Atomristors will allow for the advancement of Moore’s Law at the system level by enabling the 3-D integration of nanoscale memory with nanoscale transistors on the same chip for advanced computing systems,” Akinwande said.

Memory storage and transistors have, to date, always been separate components on a microchip, but atomristors combine both functions on a single, more efficient computer system. By using metallic atomic sheets (graphene) as electrodes and semiconducting atomic sheets (molybdenum sulfide) as the active layer, the entire memory cell is a sandwich about 1.5 nanometers thick, which makes it possible to densely pack atomristors layer by layer in a plane. This is a substantial advantage over conventional flash memory, which occupies far larger space. In addition, the thinness allows for faster and more efficient electric current flow.

Given their size, capacity and integration flexibility, atomristors can be packed together to make advanced 3-D chips that are crucial to the successful development of brain-inspired computing. One of the greatest challenges in this burgeoning field of engineering is how to make a memory architecture with 3-D connections akin to those found in the human brain.

The sheer density of memory storage that can be made possible by layering these synthetic atomic sheets onto each other, coupled with integrated transistor design, means we can potentially make computers that learn and remember the same way our brains do,” Akinwande said.

Source: https://news.utexas.edu

How To Early Detect Heart Attacks

NYU Polytechnic School of Engineering professors have been collaborating with researchers from Peking University on a new test strip that is demonstrating great potential for the early detection of certain heart attacks.

Kurt H. Becker, a professor in the Department of Applied Physics, and WeiDong Zhu, a research associate professor in the Department of Mechanical Engineering, are helping develop a new colloidal gold test strip for cardiac troponin I (cTn-I) detection. The new strip uses microplasma-generated gold nanoparticles (AuNPs) and shows much higher detection sensitivity than conventional test strips. The new cTn-I test is based on the specific immune-chemical reactions between antigen and antibody on immunochromatographic test strips using AuNPs.
gold heart
Compared to AuNPs produced by traditional chemical methods, the surfaces of the gold nanoparticles generated by the microplasma-induced liquid chemical process attract more antibodies, which results in significantly higher detection sensitivity.

Source: http://engineering.nyu.edu/

Building A Nanoscope Like a LEGO

The world’s first low cost Atomic Force Microscope (AFM) or Nanoscope has been developed in Beijing – China – by a group of PhD students from UCL – United Kingdom -, Tsinghua University and Peking University – using Lego.

In the first event of its kind, LEGO2NANO brought together students, experienced makers and scientists to take on the challenge of building a cheap and effective AFM, a device able to probe objects only a millionth of a millimetre in size – far smaller than anything an optical microscope can observe.
Lego game AFM 2

Low-cost scientific instrumentation is not just useful in high-schools, it can be a huge enabler for hospitals and clinics in developing countries, too” notes Gabriel Aeppli, director of the London Centre for Nanotechnology at UCL, a key contributor to the event, “That’s why novel initiatives like LEGO2NANO are so important.”
Low-cost scientific instruments, using cheap consumer hardware and open-source software, are becoming increasingly popular: for example, many researchers now collect data using apps on mobile phones.
Designing these state-of-the-art and low cost technologies has become an objective of industry, academia and now also the maker community, groups of talented amateurs around the globe who like to develop DIY solutions.
It’s impressive to see the UCL students working closely with their Chinese counterparts. The event was not only interdisciplinary, it also crossed the boundary between science and maker cultures”, remarked Prof. Xiao Guo, Pro-Provost (China) of UCL.

Source: http://www.ucl.ac.uk