Nuclear Energy: Fusion Power A Step Closer

The UK’s newest fusion reactor, ST40, was switched on last week, and has already managed to achieve ‘first plasma‘ – successfully generating a scorching blob of electrically-charged gas (or plasma) within its core.

The aim is for the tokamak reactor to heat plasma up to 100 million degrees Celsius (180 million degrees Fahrenheit) by 2018 – seven times hotter than the centre of the Sun. That’s the ‘fusion’ threshold, at which hydrogen atoms can begin to fuse into helium, unleashing limitless, clean energy in the process.

Nuclear fusion is the process that fuels our Sun, and if we can figure out a way to achieve the same thing here on Earth, it would allow us to tap into an unlimited supply of clean energy that produces next to no carbon emissions.Unlike nuclear fission, which is achieved in today’s nuclear reactors, nuclear fusion involves fusing atoms together, not splitting them apart, and it requires little more than salt and water, and primarily produces helium as a waste product.

 

Today is an important day for fusion energy development in the UK, and the world,” said David Kingham, CEO of Tokamak Energy, the company behind ST40. “We are unveiling the first world-class controlled fusion device to have been designed, built and operated by a private venture. The ST40 is a machine that will show fusion temperatures – 100 million degrees – are possible in compact, cost-effective reactors. This will allow fusion power to be achieved in years, not decades.

The next step is for a full set of those magnetic coils to be installed and tested within ST40, and later this year, Tokamak Energy will use them to aim to generate plasma at temperatures of 15 million degrees Celsius (27 million degrees Fahrenheit).

In 2018, the team hopes to achieve the fusion threshold of 100 million degrees Celsius (180 million degrees Fahrenheit), and the ultimate goal is to provide clean fusion power to the UK grid by 2030.

Source: http://www.tokamakenergy.co.uk/

How To Create Human Skin With 3D Bio-Printers

Spanish scientists are making human skin using a 3D bio-printer. Engineered skin was the first living human organ available commercially but its production can be expensive and time-consuming. This research at Madrid’s Carlos III University could one day lead to the mass production of skin.

bioprinter

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The idea of applying 3D bio-printers for the creation of human tissue and organs is a real breakthrough because it has changed the way people in this field think because until now we have been doing it manually. Being able to use a bio-printer to control the amount of skin over time and space gives us new possibilities that were unimaginable when we worked manually,” says Jose Luis Jorcano, Head of the CIEMAT/UC3M  Bioengineering Department.

To bio-engineer skin on a 3D bio-printer, the key component is “bio-ink,” a substance loaded with biological components such as plasma containing human skin cells. Using a computer, scientists deposit these “bio-inks” on a print bed to form the skin. Although years away, scientists believe the technology could be used to bio-engineer more complex human organs.

The idea for the future would be to be able to fully print complex organs such as hearts or kidneys but as I said, that’s the desire and the dream all of us who work in this field have, but there is no date for it yet,” explains Jose Luis Jorcano, who is the co-creator of the bio-printer.

The scientists say their prototype can produce 100 cm2 of 3D printed skin in less than 35 minutes.

Source: http://www.uc3m.es/
AND
http://www.reuters.com/

How To Remove Nanoparticles From Blood

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a general tool to separate and recover nanoparticles from other complex fluids for medical, environmental, and industrial applications.

Nanoparticles, which are generally one thousand times smaller than the width of a human hair, are difficult to separate from plasma, the liquid component of blood, due to their small size and low density. Traditional methods to remove nanoparticles from plasma samples typically involve diluting the plasma, adding a high concentration sugar solution to the plasma and spinning it in a centrifuge, or attaching a targeting agent to the surface of the nanoparticles. These methods either alter the normal behavior of the nanoparticles or cannot be applied to some of the most common nanoparticle types.

nanoparticles in blood

Nanoparticle removal chip developed by researchers in Professor Michael Heller’s lab at the UC San Diego Jacobs School of Engineering. An oscillating electric field (purple arcs) separates drug-delivery nanoparticles (yellow spheres) from blood (red spheres) and pulls them towards rings surrounding the chip’s electrodes.

This is the first example of isolating a wide range of nanoparticles out of plasma with a minimum amount of manipulation,” said Stuart Ibsen, a postdoctoral fellow in the Department of NanoEngineering at UC San Diego and first author of the study published October in the journal Small.
We’ve designed a very versatile technique that can be used to recover nanoparticles in a lot of different processes.”

Source: http://ucsdnews.ucsd.edu/