Biomaterial To Replace Plastics And Reduce Pollution

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution. Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

In the research, paperboard coated with the biomaterial exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” Jeffrey Catchmark said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

Source: http://news.psu.edu/

Coral That Beats Global Warming

Coral reefs in the Red Sea’s Gulf of Aqaba can resist rising water temperatures. If they survive local pollution, these corals may one day be used to re-seed parts of the world where reefs are dying. The scientists urge governments to protect the Gulf of Aqaba ReefsCoral reefs are dying on a massive scale around the world, and global warming is driving this extinction. The planet’s largest reef, Australia’s Great Barrier Reef, is currently experiencing enormous coral bleaching for the second year in a row, while last year left only a third of its 2300-km ecosystem unbleached. The demise of coral reefs heralds the loss of some of the planet’s most diverse ecosystems. Scientists have shown that corals in the Gulf of Aqaba in the Northern Red Sea are particularly resistant to the effects of global warming and ocean acidification. The implications are important, as the Gulf of Aqaba is a unique coral refuge. The corals may provide the key to understanding the biological mechanism that leads to thermal resistance, or the weakness that underlies massive bleaching. There is also the hope that the Gulf of Aqaba Reefs could be used to re-seed deteriorated reefs in the Red Sea and perhaps even around the world.

Scientists at EPFL (Ecole polytechnique fédérale de Lausanne) and UNIL (Université de Lausanne) in Switzerland, and Bar Ilan University and the InterUniversity Institute of Marine Sciences in Israel, performed the very first detailed physiological assessment of corals taken from the Gulf of Aqaba after exposure to stressful conditions over a six-week period. They found that the corals did not bleach.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Under these conditions,  most corals around the world would probably bleach and have a high degree of mortality,” says EPFL scientist Thomas Krueger. “Most of the variables that we measured actually improved, suggesting that these corals are living under suboptimal temperatures right now and might be better prepared for future ocean warming.”

The results are published today in the journal Royal Society Open Science.

Source: https://actu.epfl.ch/

How To Color Textiles Without Polluting Environment

Fast fashion” might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the journal ACS Applied Materials & Interfaces a nonpolluting method to color textiles using 3-D colloidal crystals.

peacock feathers

Peacock feathers, opals and butterfly wings have inspired a new way to color voile fabrics without the pollutants of traditional dyes.

Dyes and pigments are chemical colors that produce their visual effect by selectively absorbing and reflecting specific wavelengths of visible light. Structural or physical colors — such as those of opals, peacock feathers and butterfly wings — result from light-modifying micro- and nanostructures. Bingtao Tang and colleagues from Universty of Maryland wanted to find a way to color voile textiles with structural colors without creating a stream of waste.

The researchers developed a simple, two-step process for transferring 3-D colloidal crystals, a structural color material, to voile fabrics. Their “dye” included polystyrene nanoparticles for color, polyacrylate for mechanical stability, carbon black to enhance color saturation and water. Testing showed the method could produce the full spectrum of colors, which remained bright even after washing. In addition, the team said that the technique did not produce contaminants that could pollute nearby water.

Source: http://pubs.acs.org/

First Driverless Electric Bus Line Opened In Paris

Shuttling their way to a greener city. Paris opening its first driverless buses to the public on Monday. Fully electric and fully autonomous, the ‘EZ 10‘ transports up to 10 passengers across the Seine between two main stations. The buses use laser sensors to analyse their surroundings on the road and for now they don’t have to share it with any other vehicles.

driverless Bus Paris CLICK ON THE IMAGE TO ENJOY THE VIDEO

“Fewer people come on board, its slower, its electric, it doesn’t pollute and it can be stored away more easily but it will never replace a traditional bus“, says Jose Gomes, who has been driving buses here for 26 years. He’ll oversee the smooth operation of the autonomous bus.

The shuttles come as Paris faces high pollution levels. City mayor Anna Hidalgo wants to reduce the number of cars, while authorities crack down on traffic restrictions. It may be a short 130m stretch for the buses but for Paris, it’s a big step towards promoting cleaner transport.

Source: http://www.reuters.com/

Nanoparticles From Car Pollution May Trigger Alzheimer’s

Tiny magnetic particles produced by car engines and brakes can travel into the human brain and may trigger Alzheimer’s disease, scientists have warned. Researchers at Lancaster, Oxford and Manchester Universities discovered microscopic  spheres of the mineral magnetite in the brains of 37 people in Manchester and Mexico who had suffered neurodegenerative disease. The mineral magnetite is known to be toxic and is linked to the production of free radicals which are associated with Alzheimer’s Disease.

car-gas-pollution

Although magnetite has previously been found in the brains of people who had died of Alzheimer’s disease, it was thought it occurred naturally. However the tiny balls spotted by the scientists had a fused surface suggesting they had been formed during extreme heat, such as in a car engineMagnetite – a form of iron oxide – is known to be produced in car engines – particularly diesel engines which can emit up to 22 times more particulates than petrol engines – as well as when brakes are used, both by cars and trains. It can also be produced by open fires and poorly fitted stoves. Researchers said the findings opened up a ‘whole new avenue‘ into the causes of Alzheimer’s disease, while charities said it offered ‘convincing evidence‘ that the toxic particles could get into the brain. “The particles we found are strikingly similar to magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads and which are firmed by combustion or frictional heating from vehicle engines or brakes.”

Source: http://www.telegraph.co.uk/

Air-cleansing Poem Eradicates 20 Cars Pollution

Simon, Professor of Poetry at the University of Sheffield, – U.K. -and Pro-Vice-Chancellor for Science Professor Tony Ryan, have collaborated to create a catalytic poem called In Praise of Air printed on material containing a formula invented at the University which is capable of purifying its surroundings. Writing is on the wall for air pollution thanks to air-cleansing poem.
This cheap technology could also be applied to billboards and advertisements alongside congested roads to cut pollution.
PoemIn Praise of Air: Poem displayed on the University’s Alfred Denny Building
This is a fun collaboration between science and the arts to highlight a very serious issue of poor air quality in our towns and cities. “The science behind this is an additive which delivers a real environmental benefit that could actually help cut disease and save lives. “This poem alone will eradicate the nitrogen oxide pollution created by about 20 cars every day,” said Professor Ryan, who came up with the idea of using treated materials to cleanse the air.

He added: “If every banner, flag or advertising poster in the country did this, we’d have much better air quality. It would add less than £100 to the cost of a poster and would turn advertisements into catalysts in more ways than one. The countless thousands of poster sites that are selling us cars beside our roads could be cleaning up emissions at the same time.”

The 10m x 20m piece of material which the poem is printed on is coated with microscopic pollution-eating particles of titanium dioxide which use sunlight and oxygen to react with nitrogen oxide pollutants and purify the air.

Source: http://www.sheffield.ac.uk/

How To Save Earth From CO2 Pollution

Researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

The novel material developed by UNIST research team has exceptionally high CO2 adsorption capacity which could pave the way to save the Earth from CO2 pollution.

Nanoporous materials consist of organic or inorganic frameworks with a regular, porous structure. Because of their uniform pore sizes they have the property of letting only certain substances pass through, while blocking others. Nanoporous metal oxide materials are ubiquitous in materials science because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, non-siliceous metal oxide-based nanoporous materials still present challenges.
UNIST team
“I believe MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications, especially for energy-related materials” said Prof. Moon. “Because of its high CO2 adsorption capacity, it will open a new way for environmental solutions.

A description of the new research was published in the Journal of the American Chemical Society.

Source: http://www.unist.ac.kr/