How To Keep Warm In Extreme Cold Weather

Some of the winter weather gear worn by the US Army was designed 30 years ago. It’s heavy and can cause overheating during exertion, while also not doing a very good job of keeping the extremities from going numb.

 

That’s problematic if soldiers have to operate weapons as soon as they land,” said Paola D’Angelo, a research bioengineer at the US Army’s Natick Soldier Research, Development and Engineering Center in Massachusetts. “So we want to pursue this fundamental research to see if we can modify hand wear for that extreme cold weather.”

Scientists are developing smart fabrics that heat up when powered and can capture sweat. The work, which was presented at the 254th National Meeting and Exposition of the American Chemical Society, is based on research from Stanford University in California. A team embedded a network of very fine silver nanowires in cotton, and was able to heat the fabric by applying power to the wires. D’Angelo and her colleagues are working to extend the approach to other fabrics more suitable for military uniforms, including polyester and a cotton/nylon blend. By applying three volts – the output of a typical watch battery – to a one-inch square of fabric, they were able to raise its temperature by almost 40 degrees C. The researchers are also incorporating a layer of hydrogel particles made of polyethylene glycol that will absorb sweat and stop the other layers of the fabric from getting wet.

Once we have optimised the coating, we can start looking at scaling up,” said D’Angelo. The fabric has been tested with up to three washes and still works the same as unwashed fabric for most of the textiles being tested.

Source: http://www.imeche.org/

Tatoo Therapy

A temporary tattoo to help control a chronic disease might someday be possible, according to scientists at Baylor College of Medicine who tested antioxidant nanoparticles created at Rice University. A proof-of-principle study led by Baylor scientist Christine Beeton published by Nature’s online, open-access journal Scientific Reports shows that nanoparticles modified with polyethylene glycol are conveniently choosy as they are taken up by cells in the immune system. That could be a plus for patients with autoimmune diseases like multiple sclerosis, one focus of study at the Beeton lab.

tatoo-therapy

“Placed just under the skin, the carbon-based particles form a dark spot that fades over about one week as they are slowly released into the circulation,” Beeton said. T and B lymphocyte cells and macrophages are key components of the immune system. However, in many autoimmune diseases such as multiple sclerosis, T cells are the key players. One suspected cause is that T cells lose their ability to distinguish between invaders and healthy tissue and attack both.

In tests at Baylor, nanoparticles were internalized by T cells, which inhibited their function, but ignored by macrophages. “The ability to selectively inhibit one type of cell over others in the same environment may help doctors gain more control over autoimmune diseases,” Beeton said. “The majority of current treatments are general, broad-spectrum immunosuppressants,” said Redwan Huq, lead author of the study and a graduate student in the Beeton lab. “They’re going to affect all of these cells, but patients are exposed to side effects (ranging) from infections to increased chances of developing cancer. So we get excited when we see something new that could potentially enable selectivity.” Since the macrophages and other splenic immune cells are unaffected, most of a patient’s existing immune system remains intact, he added.

 

Source: http://news.rice.edu/

Nanoflowers Deliver Drugs To Cancer Cells

Biomedical engineering researchers have developed daisy-shaped, nanoscale structures that are made predominantly of anti-cancer drugs and are capable of introducing a “cocktail” of multiple drugs into cancer cells. The researchers are all part the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill.
To make the “nanodaisies,” the researchers begin with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands branching off to either side. Researchers directly link the anti-cancer drug camptothecin (CPT) onto the shorter strands and introduce the anti-cancer drug doxorubicin (Dox) into the solution. Once injected, the nanodaisies float through the bloodstream until they are absorbed by cancer cells. Once in a cancer cell, the drugs are released.

Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers
We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice,” says Dr. Zhen Gu, senior author of the paper. “And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian and brain cancers.”
Source: http://news.ncsu.edu/