New Quantum Computer Uses 10,000 Times Less Power

Japan has unveiled its first quantum computer prototype, amid a global race to build ever-more powerful machines with faster speeds and larger brute force that are key towards realising the full potential of artificial intelligence. Japan’s machine can theoretically make complex calculations 100 times faster than even a conventional supercomputer, but use just 1 kilowatt of power – about what is required by a large microwave oven – for every 10,000 kilowatts consumed by a supercomputer. Launched recently, the creators – the National Institute of Informatics, telecom giant NTT and the University of Tokyo – said they are building a cloud system to house their “quantum neural network” technology.

In a bid to spur further innovation, this will be made available for free to the public and fellow researchers for trials at https://qnncloud.com
The creators, who aim to commercialise their system by March 2020, touted its vast potential to help ease massive urban traffic congestion, connect tens of thousands of smartphones to different base stations for optimal use in a crowded area, and even develop innovative new drugs by finding the right combination of chemical compounds.

Quantum computers differ from conventional supercomputers in that they rely on theoretical particle physics and run on subatomic particles such as electrons in sub-zero temperatures. Most quantum computers, for this reason, destabilise easily and are error-prone, thereby limiting their functions.

We will seek to further improve the prototype so that the quantum computer can tackle problems with near-infinite combinations that are difficult to solve, even by modern computers at high speed,” said Stanford University Professor Emeritus Yoshihisa Yamamoto, who is heading the project.
Japan’s prototype taps into a 1km-long optical fibre cable packed with photons, and exploits the properties of light to make super-quick calculations. Its researchers said they deemed the prototype ready for public use, after tests showed that it was capable of operating stably around the clock at room temperature.

Source: http://www.straitstimes.com/

Single-Atom Transistor

Micro-engineering, physicists from the University of South Wales in Australia – UNSW – have created a working transistor consisting of a single atom placed precisely in a silicon crystal. The tiny electronic device, described today in a paper published in the journal Nature Nanotechnology, uses as its active component an individual phosphorus atom patterned between atomic-scale electrodes and electrostatic control gates. This unprecedented atomic accuracy may yield the elementary building block for a future quantum computer ( or nanocomputer) with unparalleled computational efficiencyUntil now, single-atom transistors have been realised only by chance, where researchers either have had to search through many devices or tune multi-atom devices to isolate one that works.

“But this device is perfect”, says Professor Michelle Simmons, group leader and director of the ARC Centre for Quantum Computation and Communication Technology at UNSW. “This is the first time anyone has shown control of a single atom in a substrate with this level of precise accuracy.” The microscopic device even has tiny visible markers etched onto its surface so researchers can connect metal contacts and apply a voltage, says research fellow and lead author Dr Martin Fuechsle from UNSW.

Our group has proved that it is really possible to position one phosphorus atom in a silicon environment – exactly as we need it – with near-atomic precision, and at the same time register gates,” he says. 

Source: http://newsroom.unsw.edu.au/news/science-technology/single-atom-transistor-%E2%80%9Cperfect%E2%80%9D