How To Detect Nuclear Device

How to keep U.S. ports of entry safe and secure by detecting and interdicting illicit radioactive or nuclear materials? A team led by Northeastern’s Swastik Kar and Yung Joon Jung has developed a technology that could go a long way toward achieving that goal.

nuclear radiation

Our detector could dramatically change the manner and accuracy with which we are able to detect nuclear threats at home or abroad,” says Kar, associate professor in the Department of Physics. It could also help streamline radio-medicine, including radiation therapies and scanning diagnostics, boost the effectiveness of unmanned radiation monitoring vehicles in mapping and monitoring contaminated areas following disasters, and revolutionize radiometric imaging in space exploration. Made of graphene and carbon nanotubes, the researchers’ detector far outpaces any existing one in its ultrasensitivity to charged particles, minuscule size, low-power requirements, and low cost.

All radiation, of course, is not harmful, and even the type that may be depends on dosage and length of exposure. The word “radiation” refers simply to the emission and propagation of energy in the form of waves or particles. It has many sources, including the sun, electronic devices such as microwaves and cellphones, visible light, X-rays, gamma waves, cosmic waves, and nuclear fission, which is what produces power in nuclear reactors. Most of the harmful radiations are “ionizing radiations”—they have sufficient energy to remove electrons from the orbits of surrounding atoms, causing them to become charged, or “ionized.” It is those charged particles, or ions, that the detectors pick up and quantify, revealing the intensity of the radiation. Most current detectors, however, are not only bulky, power hungry, and expensive, they also cannot pick up very low levels of ions. Kar and Yung Joon’s detector, on the other hand, is so sensitive it can pick up just a single charged particle.

Our detectors are many orders of magnitude more sensitive in terms of how small a signal they can detect,” says Yung Joon, associate professor in the Department of Mechanical and Industrial Engineering. “Ours can detect one ion, the fundamental limit. If you can detect a single ion, then you can detect everything larger than that.”

Source: http://news.northeastern.edu/

Gold Nanoparticles Fight Pancreatic Cancer

A diagnosis of pancreatic cancer is often a death sentence because chemotherapy and radiation have little impact on the disease. In the U.S. this year, some 53,000 new cases will be diagnosed, and 42,000 patients will die of the disease, according to the National Institute of Health. But research now being reported in ACS Nano could eventually lead to a new type of treatment based on gold nanoparticles.

pancreas2Pancreatic cancer is an aggressive, often fatal condition, but researchers are looking to gold nanoparticles to develop new treatments

Scientists from the University of Oklahoma Health Sciences Center (OUHCS) have previously studied these tiny gold particles as a vehicle to carry chemotherapy drug molecules into tumors or as a target to enhance the impact of radiation on tumors. In addition, Priyabrata Mukherjee and colleagues previously found that gold nanoparticles themselves could limit tumor growth and metastasis in a model of ovarian cancer in mice.

Now, the team has determined that the same holds true for mouse models of pancreatic cancer. But interestingly, the new work revealed details about cellular communication in the area surrounding pancreatic tumors. By interrupting this communication — which is partly responsible for this cancer’s lethal nature — the particles reduced the cell proliferation and migration that ordinarily occurs near these tumors. Gold nanoparticles of the size used in the new study are not toxic to normal cells, the researchers note.

Source: https://www.acs.org/

Nuclear Hazard: Major Step To Cure Radiation Sickness

At the labs of the biotech firm Pluristem Therapeutics in Haifa (Israel), researchers have developed an injection of cells from the placenta that can treat radiation exposure. Cells from the donated placentas are harvested to create a cocktail of therapeutic proteins.

nuclear radiationCLICK ON THE IMAGE TO ENJOY THE VIDEO

With these cells, we are injecting these cells to the bodies’ muscles and over there they capture stress signal from the body and they start secreting factors like… that will help the bone marrow to recover after radiation“, says Esther Lukasiewicz, Vice President (Medical Affairs)  at Pluristem Therapeutics.
The treatment is currently undergoing trials in Jerusalem and the United States. Animals exposed to radiation during testing have shown nearly a 100 percent recovery rate. The company says it’s most effective if injected within 48 hours of exposure to radiation, which could make it a vital tool in emergencies.

Yaky Yanay, President at Pluristem Therapeutics and  comments: “So it will be very easy to use, off-the-shelf and readily available. We designed it to be simple to treat it in the combat field or in case of the catastrophe itself, you just have to take the vial, take the cells out and inject it into the patients muscle so we will be able to treat or the agencies will be able to treat a lot of people in a short time.” The meltdown at Japan’s Fukushima Daiichi nuclear plant following an earthquake and tsunami in March 2011 is one such scenario. Pluristem Therapeutics is now working with Fukushima Medical University to treat people in case they are exposed to radiation.

When the Fukushima disaster happened it inspired our feeling that we have to do it stronger and quicker and we developed an aggressive plan in order to bring the product into awareness and today with NIH (National Institute of Allergy and Infectious Diseases) support and the cooperation of the Fukushima center we strongly believe that we can bring the product to cure many patients“, says Zami Aberman, Chairman and CEO at Pluristem Therapeutics.
Further trials are currently underway, and the company says the U.S. is keen to stockpile the treatment in case of emergency. They’re now developing similar treatments for disorders like Crohn’s Disease and other disorders of the central nervous system.

Source: http://www.pluristem.com/
And
http://www.reuters.com/

Nanotechnology Fights Skin Disease

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body’s natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders. The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) – oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA. In the skin – the largest organ of the body – an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress. The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion – Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance – a gentle equilibrium between Reactive Oxygen Species and their detoxification.

skin nano

The approach of using the body’s own defense system is very effective. We showed that activation of the body’s defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure,” said Hebrew University researcher Maya Ben-Yehuda Greenwald.

She showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

Currently, there are many scientific studies supporting the activation of the body’s defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so,” adds Ben-Yehuda Greenwald.

Source: http://new.huji.ac.il/

How To Kill Cancerous Cells Instantaneously

The first preclinical study of a new Rice University – developed anti-cancer technology found that a novel combination of existing clinical treatments can instantaneously detect and kill only cancer cells — often by blowing them apart — without harming surrounding normal organs. The work was conducted by researchers from Rice, the University of Texas MD Anderson Cancer Center and Northeastern University.

The first preclinical study of the anti-cancer technology “quadrapeutics” found it to be 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors

We address aggressive cancers that cannot be efficiently and safely treated today,” said Rice scientist Dmitri Lapotko, the study’s lead investigator. “Surgeons often cannot fully remove tumors that are intertwined with important organs. Chemotherapy and radiation are commonly used to treat the residual portions of these tumors, but some tumors become resistant to chemoradiation. Quadrapeutics steps up when standard treatments fail. At the same time, quadrapeutics complements current approaches instead of replacing them.”

The research is available in the online journal Nature Medicine.
Source: http://news.rice.edu/

Measuring DNA Repairs To Predict Cancer

Test analyzing cells’ ability to fix different kinds of broken DNA could help doctors predict cancer risk. Now a research team, led by professor Leona Samson from the Massachusetts Institute of Technology (MIT) used this approach to measure DNA repair in a type of immortalized human blood cells called lymphoblastoid cells, taken from 24 healthy people. They found a huge range of variability, especially in one repair system where some people’s cells were more than 10 times more efficient than others.
Our DNA is under constant attack from many sources, including environmental pollutants, ultraviolet light, and radiation. Fortunately, cells have several major DNA repair systems that can fix this damage, which may lead to cancer and other diseases if not mended.
The effectiveness of these repair systems varies greatly from person to person; scientists believe that this variability may explain why some people get cancer while others exposed to similar DNA-damaging agents do not. The team of MIT researchers has now developed a test that can rapidly assess several of these repair systems, which could help determine individuals’ risk of developing cancer and help doctors predict how a given patient will respond to chemotherapy drugs.

All of the repair pathways work differently, and the existing technology to measure each of those pathways is very different for each one. It takes expertise, it’s time-consuming, and it’s labor-intensive,” says Zachary Nagel, an MIT postdoc and lead author of the PNAS paper. “What we wanted to do was come up with one way of measuring all DNA repair pathways at the same time so you have a single readout that’s easy to measure.

None of the cells came out looking the same. They each have their own spectrum of what they can repair well and what they don’t repair well. It’s like a fingerprint for each person,” says Samson, who is the Uncas and Helen Whitaker Professor, an American Cancer Society Professor, and a member of MIT’s departments of biological engineering and of biology, Center for Environmental Health Sciences, and Koch Institute for Integrative Cancer Research.

The new test, described in the Proceedings of the National Academy of Sciences the week of April 21, can analyze four types of DNA repair capacity simultaneously, in less than 24 hours.
Source: https://newsoffice.mit.edu/

Nanotherapy for brain tumors

 For the past 40 years, radiation has been the most effective method for treating deadly brain tumors called glioblastomas. But, although the targeting technology has been refined, beams of radiation still must pass through healthy brain tissue to reach the tumor, and patients can only tolerate small amounts before developing serious side effects.
A group of researchers at The University of Texas Health Science Center at San Antonio have developed a way to deliver nanoparticle radiation directly to the brain tumor and keep it there. The method doses the tumor itself with much higher levels of radiation20 to 30 times the current dose of radiation therapy to patients — but spares a much greater area of brain tissue.

The study, published today in the journal Neuro-Oncology, has been successful enough in laboratory experiments that they’re preparing to start a clinical trial at the Cancer Therapy & Research Center, said Andrew Brenner, M.D., Ph.D., the study’s corresponding author and a neuro-oncologist at the CTRC who will lead the clinical trial.
We saw that we could deliver much higher doses of radiation in animal models,” Dr. Brenner said. “We were able to give it safely and we were able to completely eradicate tumors.

Source: http://www.uthscsa.edu/hscnews/singleformat2.asp?newID=4107