Europe: 17 Organizations United To Produce Li-Ion Batteries

Energy storage has emerged as a central building block of the EU’s objectives in low emission electric transport and replacing electricity generated by fossil fuels with renewables. The realisation that batteries are of such strategic importance has come as a wake-up call, with Europe finding itself lagging in commercialising research in the field, and for now, completely dependent on manufacturers outside the EU for battery supplies. Public and private funders in Europe that have put €555 million into developing new energy storage technologies since 2008 have little to show for it in terms of commercial outputs.

While a number of start-ups, such as France’s NAWA Technology are working on various approaches to increasing energy density and speeding up recharging of electric vehicle batteries, none are in production. As yet, Europe has no factories producing electric vehicle batteries, though LG Chem of South Korea is currently constructing a manufacturing plant in Poland, which is due to open later this year. Another Korean manufacturer, SK Innovation, whose major customer is Mercedes-Benz, has announced it will invest $777 million to build a battery plant with capacity of 7.5 GW/year in Hungary

A European company, Northvolt is planning to build a plant in Skelleftea, northern Sweden, with construction due to start in the second half of 2018. Meanwhile, Frankfurt-based TerraE announced earlier in January that it has formed a consortium of 17 companies and research institutions to handle the planning for two large-scale lithium-ion battery cell manufacturing facilities in Germany. TerraE will build and operate the factories, where customers can have batteries produced to their own specifications.

Source: https://sciencebusiness.net/

Electric Car: More Silicon To Enhance Batteries

Silicon – the second most abundant element in the earth’s crust – shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.

In a climate-neutral society, renewable and emission-free sources of energy, such as wind and solar power, will become increasingly widespread. The supply of energy from these sources, however, is intermittent, and technological solutions are needed to safeguard the availability of energy also when it’s not sunny or windy. Furthermore, the transition to emission-free energy forms in transportation requires specific solutions for energy storage, and lithium-ion batteries are considered to have the best potential.

Researchers from the University of Eastern Finland introduced new technology to Li-ion batteries by replacing graphite used in anodes by silicon. The study analysed the suitability of electrochemically produced nanoporous silicon for Li-ion batteries. It is generally understood that in order for silicon to work in batteries, nanoparticles are required, and this brings its own challenges to the production, price and safety of the material. However, one of the main findings of the study was that particles sized between 10 and 20 micrometres and with the right porosity were in fact the most suitable ones to be used in batteries. The discovery is significant, as micrometre-sized particles are easier and safer to process than nanoparticles. This is also important from the viewpoint of battery material recyclability, among other things.

In our research, we were able to combine the best of nano– and micro-technologies: nano-level functionality combined with micro-level processability, and all this without compromising performance,” Researcher Timo Ikonen from the University of Eastern Finland says. “Small amounts of silicon are already used in Tesla’s batteries to increase their energy density, but it’s very challenging to further increase the amount,” he continues.

Next, researchers will combine silicon with small amounts of carbon nanotubes in order to further enhance the electrical conductivity and mechanical durability of the material.

The findings were published in Scientific Reports .

Source: http://news.cision.com/