Nobel Prize Nanotechnologist Launches His Own Anti-Aging Cosmetic Line

In 2016, J. Fraser Stoddart won the Nobel Prize in Chemistry for his part in designing a molecular machine. Now as chief technology officer and cofounder of nanotechnology firm PanaceaNano, he has introduced the “Noble” line of antiaging cosmetics, including a $524 formula described as an “anti-wrinkle repair” night cream. The firm says the cream contains Nobel Prize-winning “organic nano-cubes” loaded with ingredients that reverse skin damage and reduce the appearance of wrinkles. Other prize-winning chemists have founded companies, but Stoddart’s backing of the antiaging cosmetic line takes the promotion of a new company by an award-winning scientist to the next level.

The nano-cubes are made of carbohydrate molecules known as cyclodextrins. The cubes, of various sizes and shapes, release ingredients such as vitamins and peptides onto the skin “at predefined times with molecular precision,” according to the Noble skin care website. PanaceaNano cofounder Youssry Botros, former nanotechnology research director at Intel, contends that the metering technology makes the product line “far superior to comparable products in the market today.” However, the nanocubes aren’t molecular machines, for which Stoddart won his Nobel prize.

While acknowledging the product line trades on his Nobel prize, Stoddart points out that “we’re not spelling our product name, Noble, the way the Swedish Nobel Foundation does.Ethicist Michael Kalichman has a different perspective. Use of the word Noble, even though spelled differently than the prize, is “unseemly but not illegal,” he says. Kalichman, who is director of the Research Ethics Program at the University of California, San Diego, adds, “If his goal is to make money, this may work. But if his goal is to retain credibility and pursue other more laudable goals, maybe he should stay focused on those goals.”

Botros says PanaceaNano is also developing nanotechnology materials for markets including hydrogen storage, flexible batteries, and molecular memory based on technology from Stoddart’s lab and licensed from Northwestern University. But PanaceaNano chose to make its first commercial product a line of cosmetics because of the high margins and the ease of market entry.

Source: https://cen.acs.org/

3D Printed Nano Fish Remove Toxins From Your Body

Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots — called microfish — that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will inspire a new generation of “smartmicrorobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said.

3D nanofish3D-printed microfish contain functional nanoparticles that enable them to be self-propelled, chemically powered and magnetically steered. The microfish are also capable of removing and sensing toxins.
The technique used to fabricate the microfish provides numerous improvements over other methods traditionally employed to create microrobots with various locomotion mechanisms, such as microjet engines, microdrillers and microrockets. Most of these microrobots are incapable of performing more sophisticated tasks because they feature simple designs — such as spherical or cylindrical structures — and are made of homogeneous inorganic materials. In this new study, researchers demonstrated a simple way to create more complex microrobots.

By combining Professor Shaochen Chen’s 3D printing technology with Joseph Wang’s expertise in microrobots, the team from the NanoEngineering Department at the UC San Diego was able to custom-build microfish that can do more than simply swim around when placed in a solution containing hydrogen peroxide. Nanoengineers were able to easily add functional nanoparticles into certain parts of the microfish bodies. They installed platinum nanoparticles in the tails, which react with hydrogen peroxide to propel the microfish forward, and magnetic iron oxide nanoparticles in the heads, which allowed them to be steered with magnets.Schematic illustration of the process of functionalizing the microfish. Platinum nanoparticles are first loaded into the tail of the fish for propulsion via reaction with hydrogen peroxide. Next, iron oxide nanoparticles are loaded into the head of the fish for magnetic control.

We have developed an entirely new method to engineer nature-inspired microscopic swimmers that have complex geometric structures and are smaller than the width of a human hair. With this method, we can easily integrate different functions inside these tiny robotic swimmers for a broad spectrum of applications,” said the co-first author Wei Zhu, a nanoengineering Ph.D. student in Chen’s research group at the Jacobs School of Engineering at UC San Diego.
The research, led by Professors Shaochen Chen and Joseph Wang of the NanoEngineering Department at the UC San Diego, was published in the journal Advanced Materials.

Source: http://www.jacobsschool.ucsd.edu/

NanoRobots Manufacture Devices At NanoScale

What does it take to fabricate electronic and medical devices tinier than a fraction of a human hair? Nanoengineers at the University of California, San Diego recently invented a new method of lithography in which nanoscale robots swim over the surface of light-sensitive material to create complex surface patterns that form the sensors and electronics components on nanoscale devices. Their research, published recently in the journal Nature Communications, offers a simpler and more affordable alternative to the high cost and complexity of current state-of-the-art nanofabrication methods such as electron beam writing.
Led by distinguished nanoengineering professor and chair Joseph Wang, the team developed nanorobots, or nanomotors, that are chemically-powered, self-propelled and magnetically controlled. Their proof-of-concept study demonstrates the first nanorobot swimmers able to manipulate light for nanoscale surface patterning. The new strategy combines controlled movement with unique light-focusing or light-blocking abilities of nanoscale robots.

nanorobotNanoengineers have invented a spherical nanorobot made of silica that focuses light like a near-field lens to write surface patterns for nanoscale devices. In this image, the red and purple areas indicate where the light is being magnified to produce a trench pattern on light-sensitive material

All we need is these self-propelled nanorobots and UV light,” said Jinxing Li, a doctoral student at the Jacobs School of Engineering and first author. “They work together like minions, moving and writing and are easily controlled by a simple magnet.

Source: http://www.jacobsschool.ucsd.edu/

Solar Power: Ninety Percent Of Captured Light Converted Into Heat

A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants designed to absorb and convert to heat more than 90 percent of the sunlight it captures. The new material can also withstand temperatures greater than 700 degrees Celsius and survive many years outdoors in spite of exposure to air and humidity. Their work, funded by the U.S. Department of Energy’s SunShot program, was published recently in two separate articles in the journal Nano Energy. By contrast, current solar absorber material functions at lower temperatures and needs to be overhauled almost every year for high temperature operations.

solarPanel

We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering. Jin, along with professor Zhaowei Liu of the department of Electrical and Computer Engineering, and Mechanical Engineering professor Renkun Chen, developed the Silicon boride-coated nanoshell material. They are all experts in functional materials engineering.

Source:  http://www.jacobsschool.ucsd.edu/