Electric Car: More Silicon To Enhance Batteries

Silicon – the second most abundant element in the earth’s crust – shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.

In a climate-neutral society, renewable and emission-free sources of energy, such as wind and solar power, will become increasingly widespread. The supply of energy from these sources, however, is intermittent, and technological solutions are needed to safeguard the availability of energy also when it’s not sunny or windy. Furthermore, the transition to emission-free energy forms in transportation requires specific solutions for energy storage, and lithium-ion batteries are considered to have the best potential.

Researchers from the University of Eastern Finland introduced new technology to Li-ion batteries by replacing graphite used in anodes by silicon. The study analysed the suitability of electrochemically produced nanoporous silicon for Li-ion batteries. It is generally understood that in order for silicon to work in batteries, nanoparticles are required, and this brings its own challenges to the production, price and safety of the material. However, one of the main findings of the study was that particles sized between 10 and 20 micrometres and with the right porosity were in fact the most suitable ones to be used in batteries. The discovery is significant, as micrometre-sized particles are easier and safer to process than nanoparticles. This is also important from the viewpoint of battery material recyclability, among other things.

In our research, we were able to combine the best of nano– and micro-technologies: nano-level functionality combined with micro-level processability, and all this without compromising performance,” Researcher Timo Ikonen from the University of Eastern Finland says. “Small amounts of silicon are already used in Tesla’s batteries to increase their energy density, but it’s very challenging to further increase the amount,” he continues.

Next, researchers will combine silicon with small amounts of carbon nanotubes in order to further enhance the electrical conductivity and mechanical durability of the material.

The findings were published in Scientific Reports .

Source: http://news.cision.com/

Green Solar Panels And Other Colors

Researchers from AMOLF, the University of Amsterdam (UvA) and the Energy Research Centre of the Netherlands (ECN) have developed a technology to create efficient bright green colored solar panels. Arrays of silicon nanoparticles integrated in the front module glass of a silicon heterojunction solar cell scatter a narrow band of the solar spectrum and create a green appearance for a wide range of angles. The remainder of the solar spectrum is efficiently coupled into the solar cell. The current generated by the solar panel is only  reduced by 10%. The realization of efficient colorful solar panels is an important step for the integration of solar panels into the built environment and landscape.
research has much focused on maximizing the electricity yield obtained from solar panels: nowadays, commercial panels have a maximum conversion efficiency from sunlight into electricity of around 22%. To reach such high efficiency, silicon solar cells have been equipped with a textured surface with an antireflection layer to absorb as much light as possible. This creates a dark blue or black appearance of the solar panels.

To create the colored solar panels the researchers have used the effect of Mie scattering, the resonant backscattering of light with a particular color by nanoparticles. They integrated dense arrays of silicon nanocylinders with a diameter of 100 nm in the top module cover slide of a high-efficiency silicon heterojunction solar cell. Due to the resonant nature of the light scattering effect, only the green part of the spectrum is reflected; the other colors are fully coupled into the solar cell. The current generated by the mini solar panel (0,7 x 0,7 cm2)  is only reduced by 10%. The solar panel appears green over a broad range of angles up to 75 degrees. The nanoparticles are fabricated using soft-imprint lithography, a technique that can readily be scaled up to large-area fabrication.
The light scattering effect due to Mie resonances is easily controllable: by changing the size of the nanoparticles the wavelength of the resonant light scattering can be tuned. Following this principle the researchers are now working to realize solar cells in other colors, and on a combination of different colors to create solar panels with a white appearance. For the large-scale application of solar panels, it is essential that their color can be tailored.

The new design was published online in the journal Applied Physics Letters.

Source: https://amolf.nl/

New Solar System Produces 50 Percent More Energy

A concentrating photovoltaic system (CPV) with embedded microtracking can produce over 50 percent more energy per day than standard silicon solar cells in a head-to-head competition, according to a team of engineers who field tested a prototype unit over two sunny days last fall.

Solar cells used to be expensive, but now they’re getting really cheap,” said Chris Giebink, Charles K. Etner Assistant Professor of Electrical Engineering, Penn State. “As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else — the inverter, installation labor, permitting fees, etc. — all the stuff we used to neglect.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent. Current CPV systems are large — the size of billboards — and have to rotate to track the sun during the day. These systems work well in open fields with abundant space and lots of direct sun.

What we’re trying to do is create a high-efficiency CPV system in the form factor of a traditional silicon solar panel,” said Giebink.

Source: http://news.psu.edu/

All Carbon Spin Transistor Is Quicker And Smaller

A researcher with the Erik Jonsson School of Engineering and Computer Science at UT Dallas has designed a novel computing system made solely from carbon that might one day replace the silicon transistors that power today’s electronic devices.

The concept brings together an assortment of existing nanoscale technologies and combines them in a new way,” said Dr. Joseph S. Friedman, assistant professor of electrical and computer engineering at UT Dallas who conducted much of the research while he was a doctoral student at Northwestern University.

The resulting all-carbon spin logic proposal, published by lead author Friedman and several collaborators in the June 5 edition of the online journal Nature Communications, is a computing system that Friedman believes could be made smaller than silicon transistors, with increased performance.

Today’s electronic devices are powered by transistors, which are tiny silicon structures that rely on negatively charged electrons moving through the silicon, forming an electric current. Transistors behave like switches, turning current on and off.

In addition to carrying a charge, electrons have another property called spin, which relates to their magnetic properties. In recent years, engineers have been investigating ways to exploit the spin characteristics of electrons to create a new class of transistors and devices called “spintronics.”

Friedman’s all-carbon, spintronic switch functions as a logic gate that relies on a basic tenet of electromagnetics: As an electric current moves through a wire, it creates a magnetic field that wraps around the wire. In addition, a magnetic field near a two-dimensional ribbon of carbon — called a graphene nanoribbon — affects the current flowing through the ribbon. In traditional, silicon-based computers, transistors cannot exploit this phenomenon. Instead, they are connected to one another by wires. The output from one transistor is connected by a wire to the input for the next transistor, and so on in a cascading fashion.

Source: http://www.utdallas.edu/

Printable solar cells

A University of Toronto (U of T) Engineering innovation could make building printing cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.

Printable Perovskite SolarCell

Economies of scale have greatly reduced the cost of silicon manufacturing,” says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. “Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes.”

Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It’s an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.

In contrast, perovskite solar cells depend on a layer of tiny crystals — each about 1,000 times smaller than the width of a human hair — made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of ‘solar ink’, they could be printed onto glass, plastic or other materials using a simple inkjet process.

Source: http://news.engineering.utoronto.ca

New Perovskite Solar Cell Outperforms Silicon Cells

Stanford and Oxford have created novel solar cells from crystalline perovskite that could outperform existing silicon cells on the market today. This design converts sunlight to electricity at efficiencies of 20 percent, similar to current technology but at much lower cost. Writing in the journal Science, researchers from Stanford and Oxford describe using tin and other abundant elements to create novel forms of perovskite – a photovoltaic crystalline material that’s thinner, more flexible and easier to manufacture than silicon crystals.


Perovskite semiconductors have shown great promise for making high-efficiency solar cells at low cost,” said study co-author Michael McGehee, a professor of materials science and engineering at Stanford. “We have designed a robust, all-perovskite device that converts sunlight into electricity with an efficiency of 20.3 percent, a rate comparable to silicon solar cells on the market today.”

The new device consists of two perovskite solar cells stacked in tandem. Each cell is printed on glass, but the same technology could be used to print the cells on plastic, McGehee added.

The all-perovskite tandem cells we have demonstrated clearly outline a roadmap for thin-film solar cells to deliver over 30 percent efficiency,” said co-author Henry Snaith, a professor of physics at Oxford. “This is just the beginning.”

Previous studies showed that adding a layer of perovskite can improve the efficiency of silicon solar cells. But a tandem device consisting of two all-perovskite cells would be cheaper and less energy-intensive to build, the authors said.

Source: http://news.stanford.edu/

Nanocomputer: Carbon Nanotube Transistors Outperform Silicon

For decades, scientists have tried to harness the unique properties of carbon nanotubes to create high-performance electronics that are faster or consume less power — resulting in longer battery life, faster wireless communication and faster processing speeds for devices like smartphones and laptops. But a number of challenges have impeded the development of high-performance transistors made of carbon nanotubes, tiny cylinders made of carbon just one atom thick. Consequently, their performance has lagged far behind semiconductors such as silicon and gallium arsenide used in computer chips and personal electronics.

Now, for the first time, University of Wisconsin–Madison materials engineers have created carbon nanotube transistors that outperform state-of-the-art silicon transistors. Led by Michael Arnold and Padma Gopalan, UW–Madison professors of materials science and engineering, the team’s carbon nanotube transistors achieved current that’s 1.9 times higher than silicon transistors. The researchers reported their advance in a paper published in the journal Science Advances.

carbon nanotube integrated circuits

This achievement has been a dream of nanotechnology for the last 20 years,” says Arnold. “Making carbon nanotube transistors that are better than silicon transistors is a big milestone. This breakthrough in carbon nanotube transistor performance is a critical advance toward exploiting carbon nanotubes in logic, high-speed communications, and other semiconductor electronics technologies.”

This advance could pave the way for carbon nanotube transistors to replace silicon transistors and continue delivering the performance gains the computer industry relies on and that consumers demand. The new transistors are particularly promising for wireless communications technologies that require a lot of current flowing across a relatively small area.

Source: http://news.wisc.edu/

How To Increase By Six Times The Capacity Of Lithium-Ion Batteries

The capacity of lithium-ion batteries might be increased by six times by using anodes made of silicon instead of graphite. A team from the Helmholtz-Zentrum Berlin (HZB) Institute of Soft Matter and Functional Materials has observed for the first time in detail how lithium ions migrate into thin films of silicon. It was shown that extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.

The team was able to show through neutron measurements made at the Institut Laue-Langevin in Grenoble, France, that lithium ions do not penetrate deeply into the silicon. During the charge cycle, a 20-nm anode layer develops containing an extremely high proportion of lithium. This means extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.
lithium-ion battery

Lithium-ion batteries provide laptops, smart phones, and tablet computers with reliable energy. However, electric vehicles have not gotten as far along with conventional lithium-ion batteries. This is due to currently utilised electrode materials such as graphite only being able to stably adsorb a limited number of lithium ions, restricting the capacity of these batteries. Semiconductor materials like silicon are therefore receiving attention as alternative electrodes for lithium batteries. Bulk silicon is able to absorb enormous quantities of lithium. However, the migration of the lithium ions destroys the crystal structure of silicon. This can swell the volume by a factor of three, which leads to major mechanical stresses. Now a team from the HZB Institute for Soft Matter and Functional Materials headed by Prof. Matthias Ballauff has directly observed for the first time a lithium-silicon half-cell during its charging and discharge cycles. “We were able to precisely track where the lithium ions adsorb in the silicon electrode using neutron reflectometry methods, and also how fast they were moving”, comments Dr. Beatrix-Kamelia Seidlhofer, who carried out the experiments using the neutron source located at the Institute Laue-Langevin.

She discovered two different zones during her investigations. Near the boundary to the electrolytes, a roughly 20-nm layer formed having extremely high lithium content: 25 lithium atoms were lodged among 10 silicon atoms. A second adjacent layer contained only one lithium atom for ten silicon atoms. Both layers together are less than 100 nm thick after the second charging cycle.

After discharge, about one lithium ion per silicon node in the electrode remained in the silicon boundary layer exposed to the electrolytes. Seidlhofer calculates from this that the theoretical maximum capacity of these types of silicon-lithium batteries lies at about 2300 mAh/g. This is more than six times the theoretical maximum attainable capacity for a lithium-ion battery constructed with graphite (372 mAh/g).

The results ar published in the journal ACSnano (DOI: 10.1021/acsnano.6b02032).

Source: https://www.helmholtz-berlin.de/

Solar Cells : How To Boost Efficiency Up To 30%

Researchers from the University of Houston have reported the first explanation for how a class of materials changes during production to more efficiently absorb light, a critical step toward the large-scale manufacture of better and less-expensive solar panels. The work, published this month as the cover story for Nanoscale, offers a mechanism study of how a perovskite thin film changes its microscopic structure upon gentle heating, said Yan Yao, assistant professor of electrical and computer engineering and lead author on the paper. This information is crucial for designing a manufacturing process that can consistently produce high-efficiency solar panels.

Perovskite cheap

Last year Yao and other researchers identified the crystal structure of the non-stoichiometric intermediate phase as the key element for high-efficiency perovskite solar cells. But what happened during the later thermal annealing step remained unclear. The work is fundamental science, Yao said, but critical for processing more efficient solar cells.

Otherwise, it’s like a black box,” he said. “We know certain processing conditions are important, but we don’t know why.”

The work also yielded a surprise: the materials showed a peak efficiency – the rate at which the material converted light to electricity – before the intermediate phase transformation was complete, suggesting a new way to produce the films to ensure maximum efficiency. Yao said researchers would have expected the highest efficiency to come after the material had been converted to 100 percent perovskite film. Instead, they discovered the best-performing solar devices were those for which conversion was stopped at 18 percent of the intermediate phase, before full conversion.

We found that the phase composition and morphology of solvent engineered perovskite films are strongly dependent on the processing conditions and can significantly influence photovoltaic performance,” the researchers wrote. “The strong dependence on processing conditions is attributed to the molecular exchange kinetics between organic halide molecules and DMSO (dimethyl sulfoxide) coordinated in the intermediate phase.

Perovskite compounds commonly are comprised of a hybrid organic-inorganic lead or tin halide-based material and have been pursued as potential materials for solar cells for several years. Yao said their advantages include the fact that the materials can work as very thin films – about 300 nanometers, compared with between 200 and 300 micrometers for silicon wafers, the most commonly used material for solar cells. Perovskite solar cells also can be produced by solution processing at temperatures below 150 degrees Centigrade (about 300 degrees Fahrenheit) making them relatively inexpensive to produce.

At their best, perovskite solar cells have an efficiency rate of about 22 percent, slightly lower than that of silicon (25 percent). But the cost of silicon solar cells is also dropping dramatically, and perovskite cells are unstable in air, quickly losing efficiency. They also usually contain lead, a toxin.

Still, Yao said, the materials hold great promise for the solar industry, even if they are unlikely to replace silicon entirely. Instead, he said, they could be used in conjunction with silicon, boosting efficiency to 30 percent or so.

Source: http://www.uh.edu/

Perovskite Solar Cells Surpass 20% Efficiency

Researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals.
Michael Graetzel and his team found that, by briefly reducing the pressure while fabricating perovskite crystals, they were able to achieve the highest performance ever measured for larger-size perovskite solar cells, reaching over 20% efficiency and matching the performance of conventional thin-film solar cells of similar sizes. This is promising news for perovskite technology that is already low cost and under industrial development. However, high performance in pervoskites does not necessarily herald the doom of silicon-based solar technology. Safety issues still need to be addressed regarding the lead content of current perovskite solar-cell prototypes in addition to determining the stability of actual devices.

peroskite solar cell

Layering perovskites on top of silicon to make hybrid solar panels may actually boost the silicon solar-cell industry. Efficiency could exceed 30%, with the theoretical limit being around 44%. The improved performance would come from harnessing more solar energy: the higher energy light would be absorbed by the perovskite top layer, while lower energy sunlight passing through the perovskite would be absorbed by the silicon layer. Graetzel is known for his transparent dye-sensitized solar cells. It turns out that the first perovskite solar cells were dye-sensitized cells where the dye was replaced by small perovskite particles. His lab’s latest perovskite prototype, roughly the size of an SD card, looks like a piece of glass that is darkened on one side by a thin film of perovskite. Unlike the transparent dye-sensitized cells, the perovskite solar cell is opaque.

The results are published in Science.

Source: http://actu.epfl.ch/

Solar Cells: How To Transform More Solar Energy Into Electricity

Sagrario Domínguez-Fernández, a Spanish telecommunications engineer at CEMITEC, has managed to increase light absorption in silicon by means of nanostructures etched onto photovoltaic cells. This increases the efficiency obtained in these electronic devices which are made of this element and which transform solar energy into electricity.
solar cells

Over 30 percent of the sunlight that strikes a silicon is reflected, which means it cannot be used in the photoelectric conversion,” explained Sagrario Domínguez. “Because the nanostructures on the surface of a material have dimensions in the light wavelength range, they interfere with the surface in a particular way and allow the amount of reflected light to be modified.”

Sagrario Domínguez designed and optimised structures on a nanometric scaleto try and find one that would minimise the reflectance [ability of a surface to reflect light] of the silicon in the wavelength range in which solar cells function.” In their manufacturing process, she resorted to what is known as laser interference lithography which consists of applying laser radiation to a photo-sensitive material to create structures on a nanometric scale. Specifically, she used polished silicon wafers to which she gave the shape of cylindrical pillar and obtained a 77 percent reduction in the reflectance of this element.

Sagrario Domínguez then went on to modify the manufacturing processes to produce the nanostructures on the silicon substrates used in commercial solar cells. “These substrates have dimensions and a surface roughness that makes them, ‘a priori’, unsuitable for processes,” pointed out the researcher. Having overcome the difficulties, she incorporated nanostructures onto following the standard processes of the photovoltaics industry. “According to the literature, this is the first time that it has been possible to manufacture periodic nanostructures; they are the ones that on the surface of a material are continuously repeated on substrates of this type, and therefore, the first standard solar cell with periodic nanostructures,” pointed out the new MIT PhD holder. The efficiency obtained is 15.56 percent, which is a very promising value when compared with others included in the literature.

Source: http://phys.org/

New 2D Material Upstages Graphene

A new one atom-thick flat material that could upstage the wonder material graphene and advance digital technology has been discovered by a physicist at the University of Kentucky working in collaboration with scientists from Daimler in Germany and the Institute for Electronic Structure and Laser (IESL) in Greece. The new material is made up of silicon, boron and nitrogen — all light, inexpensive and earth abundant elements — and is extremely stable, a property many other graphene alternatives lack.

2D material University of Kentucky

We used simulations to see if the bonds would break or disintegrate — it didn’t happen,” said Madhu Menon, a physicist in the UK Center for Computational Sciences. “We heated the material up to 1,000-degree Celsius and it still didn’t break.

Using state-of-the-art theoretical computations, Menon and his collaborators Ernst Richter from Daimler and a former UK Department of Physics and Astronomy post-doctoral research associate, and Antonis Andriotis from IESL, have demonstrated that by combining the three elements, it is possible to obtain a one atom-thick, truly 2D material with properties that can be fine-tuned to suit various applications beyond what is possible with graphene.

The findings are reported in the journal Physical Review B, Rapid Communications,

Source: http://uknow.uky.edu/