By 2025 Renewables Will Power 67 Percent Of South Australia

Declining renewables and energy storage costs will increasingly squeeze out gas-fired generation in South Australia as early as 2025, a joint research report conducted by Wood Mackenzie and GTM Research shows. The South Australia experience is noteworthy in a global power mix set to increasingly shift to renewable energy. South Australia retired its last coal plant in 2016 and is projected to have installed renewable energy capacity exceed its peak demand by 2020.

By 2025, wind, solar and battery costs will fall by 15 percent, 25 percent and 50 percent respectively. By then, renewables and batteries could offer a lower cost alternative to combined-cycle gas turbine plants, which are commonly used to manage base load power generation in South Australia. Meanwhile by 2035, renewables and batteries will provide a commercial solution for both base loads and peak loads. As a consequence, gas will increasingly be used just for emergency back-up.

One determining factor is the rate with which battery charging costs declines. By 2025, we expect battery charging cost to decrease as off-peak prices will gradually be set by excess wind generation. Battery storage then becomes a potential solution for managing peak loads,” said Bikal Pokharel, principal analyst for Wood Mackenzie‘s Asia-Pacific power and renewables .
By 2025 it’s expected that 67 percent of South Australia’s power capacity will come from renewables. Gas demand in the power sector will then decline by 70 percent.

Currently, South Australia’s peak loads are managed by open-cycle gas turbine (OCGT) plants. But by 2025, battery storage would be cheaper than OCGTs in managing peak loads even at gas price of A$7/mmbtu. OCGTs would then be relegated as emergency back-ups.”


Solar Plant produces twice more Than Nuclear Power Plant

A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Called the TuNur project; developers, including renewable investment company Low Carbon and solar developer Nur Energie, say the site will produce twice as much energy as the average nuclear power plant. But instead of using typical photovoltaic cells that only generate power during the day; they’re using Concentrated Solar Power. Using a vast array of mirrors to concentrate and  reflect the intense Saharan sun to a central tower, water or molten salt is heated to over 500 degrees Celsius. The steamced powers a turbine which in turn generates electricity. This, says Nur Energie‘s CEO Kevin Sara, means the plant will produce electricity even when the sun is down.


solar power plant

 “The technology that you can deploy in the desert is baseload renewable power; that means you can actually replace fossil fuel power plants because we can generate 24-7 using solar power,” says Kevin Sara, CEO of Nur Energie. Transmission lines will take the electricity to the Tunisian coast where a dedicated undersea cable will connect it to the European grid via a hub in northern Italy. Over ten millions euros has already gone into identifying the best location in the Tunisian Sahara to harness the intense solar radiation. “It’s quite large; it’s 10,000 hectares – a hundred square kilometres. But there’s nothing there, it’s just sand and a few bushes.

With energy security a big concern, Sara says the project has the potential to help end Europe’s reliance on fossil fuels using ‘desert power‘. “We believe that this is really opening a new energy corridor. This could be the first of many projects, and we could gradually de-carbonise the European grid using desert power, using this solar energy with storage from the Sahara desert and linked to Europe with high-voltage DC cables which are very, very low in their losses.” Sara added.
Tunisia is seeking to bolster its stability following the 2011 uprising, with lack of jobs and growth contributing to the unrest. The team behind the TuNur project hope the Saharan sunshine will be a shining light not only for renewable energy, but for the future of Tunisia.


A Battery Made of Wood To Store Solar Energy

A research team supported by the University of Maryland and the U.S. National Science Foundation has invented a sliver of wood coated with tin that could make a tiny, long-lasting, efficient and environmentally friendly battery. But don’t try it at home yet – the components in the battery tested by scientists at the University of Maryland are a thousand times thinner than a piece of paper. Using sodium instead of lithium, as many rechargeable batteries do, makes the battery environmentally benign. Sodium doesn’t store energy as efficiently as lithium, so you won’t see this battery in your cell phone – instead, its low cost and common materials would make it ideal to store huge amounts of energy at once, such as solar energy at a power plant.
Existing batteries are often created on stiff bases, which are too brittle to withstand the swelling and shrinking that happens as electrons are stored in and used up from the battery. Liangbing Hu, Teng Li and their team found that wood fibers are supple enough to let their sodium-ion battery last more than 400 charging cycles, which puts it among the longest lasting nanobatteries.
sodium-ion battery
The inspiration behind the idea comes from the trees,” said Hu, an assistant professor of materials science. “Wood fibers that make up a tree once held mineral-rich water, and so are ideal for storing liquid electrolytes, making them not only the base but an active part of the battery.

Lead author Hongli Zhu and other team members noticed that after charging and discharging the battery hundreds of times, the wood ended up wrinkled but intact. Computer models showed that that the wrinkles effectively relax the stress in the battery during charging and recharging, so that the battery can survive many cycles.