Rapid, Cheap Liver Cancer Test

University of Utah researchers say they are designing a diagnostic method that will be able to accurately identify signs of liver cancer within minutes, saving critical time for patients of the stealthy disease. The new type of test could forever change how people screen for the disease, said Marc Porter, a U. chemical engineering and chemistry professor who is leading the research along with Dr. Courtney Scaife, a surgeon who both practices and teaches surgery for the university. Porter said the long-term vision is for the tool itself to become as automatic and portable as a pregnancy test, though additional technology — called a spectrometer — is currently needed to precisely measure the results of the test.

A small domino-sized cartridge holds a membrane for a new field test for liver cancer developed by researchers from the University of Utah. The test doesn’t involve sending a specimen to a blood lab and cuts the wait time for results from two weeks to two minutes. It can be administered wherever the patient is, which will be valuable for developing nations with little access to hospitals.

It’s really compact, it’s simple and low cost,” he said of the test kit.

Liver cancer is difficult to survive because typically it is highly developed by the time symptoms show up, Porter said. It is the second deadliest form of cancer worldwide, resulting in about 788,000 deaths in 2015, according to the World Health Organization. “All too often, the cancer is diagnosed past when you can actually have surgical intervention,” Porter said.

Currently, a blood test taken to determine the presence of liver cancer is usually sent to a lab offsite, where it takes days or even up to two weeks to test and return, said Vincent Horiuchi, spokesman for the U.’s College of Engineering. Those days are precious time that is lost in the fight against the disease, he said.

Source: https://unews.utah.edu/

Nanoscope Sees Images 100,000 Times Smaller Than A Human Hair

A microscope that produces images a hundred-thousand times smaller than the width of a human hair wasn’t quite enough for Dr David Dowsett. At the Luxembourg Institute of Science and Technology (LIST), Dowsett and his team added a specially designed prototype spectrometer. They say their secondary ion mass spectrometer – or SIMS – analysis tool, is one of the most powerful in the world.

nanoscope list

A human hair is about 50 to 100 microns in diameter. The resolution of our microscope images is half a nanometer and the resolution of our SIMS images is about 10 nanometres. So, that’s about 100,000 times smaller than the diameter of a human hair“, says Dr. David Dowsett, Senior research & Technology Associate at the  Luxembourg Institute of  Science and  Technology (LIST). And it’s attracting interest from big business for it’s immense imaging and chemical mapping capabilities… including from cosmetic companies.  “So when they say ‘this is the science bit’ – that’s actually us. We’ve worked for a least one of the big pharmaceutical companies developing shampoo, so looking at whether the shampoo really penetrates into the hair,” he adds.
The precision tool’s impact could be huge for many industries, including the development of new semiconductors and Lithium ion batteries. It could also play a vital role in the the improvement and development of medicine.
We can follow where those nanoparticles have been uptaken into, for example, human cells. And also we can see whether or not a labelled drug is present within the cell, in the same place as the nanoparticle; so we can really start to test whether a delivery system is effective“, concludes Dowsett. Now he is working with his team on an improved version of the device and investigating possibilities to commercialise the development.

Source: http://www.reuters.com/