DNA Origami, The New Revolution To Come For Nanotechnology

For the past few decades, some scientists have known the shape of things to come in nanotechnology is tied to the molecule of life, DNA. This burgeoning field is called “DNA origami.” The moniker is borrowed from the art of conjuring up birds, flowers and other shapes by imaginatively folding a single sheet of paper. Similarly, DNA origami scientists are dreaming up a variety of shapes — at a scale one thousand times smaller than a human hair — that they hope will one day revolutionize computing, electronics and medicine. Now, a team of Arizona State University and Harvard scientists has invented a major new advance in DNA nanotechnology. Dubbed “single-stranded origami” (ssOrigami), their new strategy uses one long noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — without even a single knot — into the largest, most complex structures to date. And the strands forming these structures can be made inside living cells or using enzymes in a test tube, allowing scientists the potential to plug-and-play with new designs and functions for nanomedicine: picture tiny nanobots playing doctor and delivering drugs within cells at the site of injury.

A DNA origami with an emoji-like smiley face

I think this is an exciting breakthrough, and a great opportunity for synthetic biology as well,” said Hao Yan, a co-inventor of the technology, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics, and the Milton Glick Professor in the School of Molecular Sciences.

We are always inspired by nature’s designs to make information-carrying molecules that can self-fold into the nanoscale shapes we want to make,” he said.

As proof of concept, they’ve pushed the envelope to make 18 shapes, including emoji-like smiley faces, hearts and triangles, that significantly expand the design studio space and material scalability for so-called, “bottom-upnanotechnology.

Source: https://asunow.asu.edu/

Shape-shifting Molecular Robots

A research group at Tohoku University and Japan Advanced Institute of Science and Technology has developed a molecular robot consisting of biomolecules, such as DNA and protein. The molecular robot was developed by integrating molecular machines into an artificial cell membrane. It can start and stop its shape-changing function in response to a specific DNA signal.

This is the first time that a molecular robotic system has been able to recognize signals and control its shape-changing function. What this means is that molecular robots could, in the near future, function in a way similar to living organisms.

Using sophisticated biomolecules such as DNA and proteins, living organisms perform important functions. For example, white blood cells can chase bacteria by sensing chemical signals and migrating toward the target. In the field of chemistry and synthetic biology, elemental technologies for making various molecular machines, such as sensors, processors and actuators, are created using biomolecules. A molecular robot is an artificial molecular system that is built by integrating molecular machines. The researchers believe that realization of such a system could lead to a significant breakthrough – a bio-inspired robot designed on a molecular basis.

molecular robot

The molecular robot developed by the research group is extremely small – about one millionth of a meter – similar in size to human cells. It consists of a molecular actuator, composed of protein, and a molecular clutch, composed of DNA. The shape of the robot’s body (artificial cell membrane) can be changed by the actuator, while the transmission of the force generated by the actuator can be controlled by the molecular clutch. The research group demonstrated through experiments that the molecular robot could start and stop the shape-changing behavior in response to a specific DNA signal.

The findings were published in Science Robotics.

Source: http://www.tohoku.ac.jp/

Bacterial FM Radio

A team of biologists and engineers at the University of California San Diego (UC San Diego) develop a bacterial “FM Radio”. Objective: Programming living cells to offer the prospect of harnessing sophisticated biological machinery for transformative applications in energy, agriculture, water remediation and medicine. Inspired by engineering, researchers in the emerging field of synthetic biology have designed a tool box of small genetic components that act as intracellular switches, logic gates, counters and oscillators.

Independent genetic circuits are linked within single cells, illustrated under the magnifying glass, then coupled via quorum sensing at the colony level. But scientists have found it difficult to wire the components together to form larger circuits that can function as “genetic programs.” One of the biggest obstacles? Dealing with a small number of available wires.
The team’s breakthrough involves a form of “frequency multiplexing” inspired by FM radio.
This circuit lets us encode multiple independent environmental inputs into a single time series,” said Arthur Prindle, a bioengineering graduate student at UC San Diego and the first author of the study. “Multiple pieces of information are transferred using the same part. It works by using distinct frequencies to transmit different signals on a common channel.”
The findings have been published in this week’s advance online publication of the journal Nature.

Source: http://ucsdnews.ucsd.edu/