Thermoelectric Power Generation

Thermoelectric (TE) materials could play a key role in future technologies. Although the applications of these remarkable compounds have long been explored, they are mostly limited to high-temperature devices. Recently, researchers at Osaka University, in collaboration with Hitachi, Ltd., developed a new TE material with an improved power factor at room temperature. Their study, published in Physica Status Solidi RRL, could help bring these materials out of the high-temperature niche and into the mainstream.

TE materials display the thermoelectric effect: apply heat on one side, and an electric current starts to flow. Conversely, run an external current through the device, and a  temperature gradient forms; i.e., one side becomes hotter than the other. By interconverting heat and electricity, TE materials can be used as either power generators (given a heat source) or refrigerators (given a power supply).

The ideal TE material combines high electrical conductivity, allowing the current to flow, with low thermal conductivity, which prevents the temperature gradient from evening out. The power generation performance mainly depends on the “power factor,” which is proportional to both electrical conductivity and a term called the Seebeck coefficient.

Unfortunately, most TE materials are often based on rare or toxic elements,” according to study co-author Sora-at Tanusilp. “To address this, we combined silicon – which is common in TE materials – with ytterbium, to create ytterbium silicide [YbSi2]. We chose ytterbium over other metals for several reasons. First, its compounds are good electrical conductors. Second, YbSi2 is non-toxic. Moreover, this compound has a specific property called valence fluctuation that make it a good TE material at low temperatures.

Source: http://resou.osaka-u.ac.jp/