Ultrafast Flexible Electronic Memory

Engineering experts from the University of Exeter (UK) have developed innovative new memory using a hybrid of graphene oxide and titanium oxide. Their devices are low cost and eco-friendly to produce, are also perfectly suited for use in flexible electronic devices such as ‘bendablemobile phone, computer and television screens, and even ‘intelligentclothing.
. Crucially, these devices may also have the potential to offer a cheaper and more adaptable alternative to ‘flash memory’, which is currently used in many common devices such as memory cards, graphics cards and USB computer drives. The research team insist that these innovative new devices have the potential to revolutionise not only how data is stored, but also take flexible electronics to a new age in terms of speed, efficiency and power.

bendable mobile phone

Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the ‘cheap and cheerful’ end of the electronics goods market”, said Professor David Wright, an Electronic Engineering expert from the University of Exeter.

Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds – with one nanometre being one billionth of a metre and one nanosecond a billionth of a second.”

The research is published in the scientific journal ACS Nano.

Source: http://www.exeter.ac.uk/

Nanocoatings Reduce Dental Implant Bacterial Infection By 97%

According to the American Academy of Implant Dentistry (AAID), 15 million Americans have crown or bridge replacements and three million have dental implants – with this latter number rising by 500,000 a year. The AAID estimates that the value of the American and European market for dental implants will rise to $4.2 billion by 2022. Dental implants are a successful form of treatment for patients, yet according to a study published in 2005, five to ten per cent of all dental implants fail. The reasons for this failure are several-fold – mechanical problems, poor connection to the bones in which they are implanted, infection or rejection. When failure occurs the dental implant must be removed. The main cause for dental implant failure is peri-implantitis. This is the destructive inflammatory process affecting the soft and hard tissues surrounding dental implants. This occurs when pathogenic microbes in the mouth and oral cavity develop into biofilms, which protects them and encourages growth. Peri-implantitis is caused when the biofilms develop on dental implants.

A research team comprising scientists from the School of Biological and Marine Sciences, Peninsula Schools of Medicine and Dentistry and the School of Engineering at the University of Plymouth, have joined forces to develop and evaluate the effectiveness of a new nanocoating for dental implants to reduce the risk of peri-implantitis.

dentistIn this cross-Faculty study we have identified the means to protect dental implants against the most common cause of their failure. The potential of our work for increased patient comfort and satisfaction, and reduced costs, is great and we look forward to translating our findings into clinical practice,”  commented Professor Christopher Tredwin, Head of Plymouth University Peninsula School of Dentistry.

In the study, the research team created a new approach using a combination of silver, titanium oxide and hydroxyapatite nanocoatings. The application of the combination to the surface of titanium alloy implants successfully inhibited bacterial growth and reduced the formation of bacterial biofilm on the surface of the implants by 97.5 per cent.

Not only did the combination result in the effective eradication of infection, it created a surface with anti-biofilm properties which supported successful integration into surrounding bone and accelerated bone healing.

The results of their work are published in the journal Nanotoxicology.

Source: https://www.plymouth.ac.uk/

How To Measure Nanoparticles In Cosmetics

Cosmetics increasingly contain nanoparticles. One especially sensitive issue is the use of the miniscule particles in cosmetics, since the consumer comes into direct contact with the products. Sunscreen lotions for example have nanoparticles of titanium oxide. They provide UV protection: like a film made of infinite tiny mirrors, they are applied to the skin and reflect UV rays. But these tiny particles are controversial. They can penetrate the skin if there is an injury, and trigger an inflammatory reaction. Its use in spray-on sunscreens is also problematic. Scientists fear that the particles could have a detrimental effect on the lungs when inhaled. Even the effect on the environment has not yet been adequately researched. Studies indicate that the titanium oxide which has seeped into public beaches through sunscreens can endanger environmental balance. Therefore, a labeling requirement has been in force since July 2013, based on an EU Directive on cosmetics and body care products. If nano-sized ingredients are used in a product, the manufacturer must make this fact clear by adding “nano-” to the listed ingredient name. Due to requirements imposed by the legislature, the need for analysis methods is huge.

sunscreen

The light diffusion process and microscopy are not selective enough for a lot of studies, including toxicological examinations,” says Gabriele Beck-Schwadorf, scientist at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart (Germany). The group manager and her team have advanced and refined an existing measurement method in a way that allows them to determineResearchers measure individual particles by single particle, inductively coupled plasma mass spectrometry (or SP-ICP-MS). “With this method, I determine mass. Titanium has an atomic mass of 48 AMUs (atomic mass units). If I set the spectrometer to that, then I can target the measurement of titanium,” explains Katrin Sommer, food chemist at IGB.

Source: http://www.fraunhofer.de/