Copycat Robot

Introducing T-HR3, third generation humanoid robot designed to explore how clever joints can improve brilliant balance and real remote controlToyota says its 29 joints allow it to copy the most complex of moves – safely bringing friendly, helpful robots one step closer.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

Humanoid robots are very popular among Japanese people…creating one like this has always been our dream and that’s why we pursued it,” says Akifumi Tamaoki, manager of Partner robot division at Toyota.

The robot is controlled by a remote operator sitting in an exoskeletonmirroring its master’s moves, a headset giving the operator a realtime robot point of view.

We’re primarily focused on making this robot a very family-oriented one, so that it can help people including services such as carer” explains Tamaoki.
Toyota said T-HR3 could help around the homes or medical facilities in Japan or construction sites, a humanoid helping hand – designed for a population ageing faster than anywhere else on earth.

Source: http://toyota.com/

More Durable Fuel Cells For Hydrogen Electric Car

Take a ride on the University of Delaware’s (UDFuel Cell bus, and you see that fuel cells can power vehicles in an eco-friendly way. In just the last two years, Toyota, BMW and Honda have released vehicles that run on fuel cells, and carmakers such as GM, BMW and VW are working on prototypes.  If their power sources lasted longer and cost less, fuel cell vehicles could go mainstream faster. Now, a team of engineers at UD has developed a technology that could make fuel cells cheaper and more durable.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind. Materials called catalysts spur these electrochemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles. However, platinum is expensive — as anyone who’s shopped for jewelry knows. The metal costs around $30,000 per kilogram. Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

The material is typically made at very high temperatures, about 1,500 Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on,” explains Vlachos, professor at the Catalysis Center for Energy Innovation (UD). “Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis.”

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more. The results are described in a paper published in Nature Communications.

Source: https://www.udel.edu/

The Rise Of The Hydrogen Electric Car

Right now, if you want an alternative-fuel vehicle, you have to pick from offerings that either require gasoline or an electrical outlet. The gas-electric hybrid and the battery-powered car — your Toyota Priuses, Chevy Volts, and Teslas — are staples in this space. There are drawbacks for drivers of both types. You still have to buy gas for your hybrid and you have to plug in your Tesla — sometimes under less than favorable conditions — lest you be stranded someplace far away from a suitable plug. Beyond that, automakers have been out to find the next viable energy source. Plug-in vehicles are more or less proven to be the answer, but Toyota and a handful of other carmakers are investigating hydrogen.

toyota-mirai

That’s where the Toyota Mirai comes in. The Mirai‘s interior center stack has all the technology you would expect from a car that retails for $57,500, including navigation, Bluetooth, and USB connectivity. It’s all accessible by touch screens and robust digital displays.
A fill-up on hydrogen costs just about as much as regular gasoline in San Francisco. The Mirai gets an estimated 67 MPGe (67 Miles per gallon gasoline equivalent = 28,5 kilometers per liter)), according to Toyota.
It’s an ambitious project for Toyota because the fueling infrastructure for this car is minimal. There are only 33 public hydrogen-filling stations in the US, according to the US Department of Energy. Twenty-six of those stations are in California, and there’s one each in Connecticut, Massachusetts, and South Carolina.

If you include public and private hydrogen stations, then the total climbs to 58 — nationwide. Compare that to the more than 15,100 public electric-charging stations and the 168,000 retail gas stations in the US, and you can see the obvious drawback of hydrogen-powered cars. Despite this, the Mirai is an interesting project, and you must keep in mind that Japan at the Government level seems to bet on a massively hydrogen powered economy in the near future (fuel, heating, replacement of nuclear energy, trains, electric vehicles, etc…).

Source: http://www.businessinsider.com