Smart Printed Electronics

Researchers in AMBER, the materials science research centre hosted in Trinity College Dublin, have fabricated printed transistors consisting entirely of 2-dimensional nanomaterials for the first time. These 2D materials combine exciting electronic properties with the potential for low-cost production. This breakthrough could unlock the potential for applications such as food packaging that displays a digital countdown to warn you of spoiling, wine labels that alert you when your white wine is at its optimum temperature, or even a window pane that shows the day’s forecast

This discovery opens the path for industry, such as ICT and pharmaceutical, to cheaply print a host of electronic devices from solar cells to LEDs with applications from interactive smart food and drug labels to next-generation banknote security and e-passports.

printed transistor

Prof Jonathan Coleman, who is an investigator in AMBER and Trinity’s School of Physics, said, “In the future, printed devices will be incorporated into even the most mundane objects such as labels, posters and packaging.
Printed electronic circuitry (constructed from the devices we have created) will allow consumer products to gather, process, display and transmit information: for example, milk cartons could send messages to your phone warning that the milk is about to go out-of-date.

We believe that 2D nanomaterials can compete with the materials currently used for printed electronics. Compared to other materials employed in this field, our 2D nanomaterials have the capability to yield more cost effective and higher performance printed devices. However, while the last decade has underlined the potential of 2D materials for a range of electronic applications, only the first steps have been taken to demonstrate their worth in printed electronics. This publication is important because it shows that conducting, semiconducting and insulating 2D nanomaterials can be combined together in complex devices. We felt that it was critically important to focus on printing transistors as they are the electric switches at the heart of modern computing. We believe this work opens the way to print a whole host of devices solely from 2D nanosheets.”
Led by Prof Coleman, in collaboration with the groups of Prof Georg Duesberg (AMBER) and Prof. Laurens Siebbeles (TU Delft, Netherlands), the team used standard printing techniques to combine graphene nanosheets as the electrodes with two other nanomaterials, tungsten diselenide and boron nitride as the channel and separator (two important parts of a transistor) to form an all-printed, all-nanosheet, working transistor.

The AMBER team’s findings have been published today in the journal Science*.


SpaceX Hyperloop A Step Closer To Reality

The Hyperloop high-speed transportation system has moved a step closer to reality. Teams competed to design subscale versions of the transport pods that could one day whisk passengers between San Francisco and Los Angeles in under half an hour. The competition was hosted by SpaceX and its founder, Elon Musk. Although Musk is not directly involved in the construction of the Hyperloop, the billionaire entrepreneur originally envisioned the concept, having created an open-source plan that encouraged others to build it. The idea is that passengers would travel through low-pressure steel tubes at up to 800 mph (1,288 kph), propelled by a magnetic accelerator. The fastest pod in the competition reached 58mph (93 kph). That was designed and built by a 35-person team from the Technical University of Munich, Germany.


What made our team stand out is actually a compressor which we bought out of an old aircraft. It’s there to reduce drag and give us some additional speed.” A team from Delft University of Technology in the Netherlands achieved the highest overall score in the competition for their pod with a levitation, stabilization and braking system based on permanent magnets“, said Josef Fleischmann, member of the WARR team from Technical University of Munich.

Hyperloop, the technology is pretty much there already, we just have to implement it. One of the things this competition is for is to show the world that we can do this and convince them that we should build it somewhere and get the ball rolling,” explains Mars Geuze, technical of Delft Hyperloop.
SpaceX has said it will hold a second competition, open to both new and existing student teams, in Summer 2017, this time focused only on maximum speed.


Solar-powered Wireless Charging Station For Electric Bikes

Members of the Delft University of Technology (TU Delft) in Netherlands have presented the first solar-powered wireless charging station for electric bikes.


This is a major step forward in terms of sustainable transport and accelerating the energy transition because the combination of solar energy, wireless charging and electric bikes is unique. In this charging station, we charge the DC battery in the bike with the solar energy from the eight solar panels via the DC supply. The charging station can also store 10 kWh of solar energy in the batteries, enabling it to function independently“, sayd  Pavol Bauer, who leads the Direct Current (DC) Systems, Energy Conversion & Storage group at the University.

The charging station is ready for immediate use: it can accommodate four electric bikesan electric scooter and a research bike that are charged wirelessly. The charging station also serves as a living lab, a testbed for further research. In the last two years, ten students have graduated on the strength of their work on the project. For example, a student of Electrical Engineering, Mathematics and Computer Science designed a DC system and created a system to enable the bike to be charged wirelessly, another calculated and determined the output and position of the solar panels, and an Industrial Design Engineering student was responsible for designing the charging station.

The electric research bike is equipped with a dual stand and a small coil. At the charging station, the bike can be parked on the stand on a magnetic tile. The bike is charged directly via the coil. The user can monitor the charging status on a built-in screen on the charging station or on his or her mobile phone. Wireless charging takes around the same time as the ‘conventional‘ charging of electric bikes.

It is anticipated that the eight panels will generate sufficient energy to power the electric bikes and the scooter in winter. In summer, any excess power will be fed to the electricity grid. Pavol Bauer’s group now plans to work on the further development of wireless charging for various bikes and scooters. The ultimate aim is for the charging station to consist solely of several tiles used as a solar panel, which can be cycled on, known as solar roads. Integrating solar cells and the wireless charging system makes an expensive system unnecessary.