How To Track Blood Flow In Tiny Vessels

Scientists have designed gold nanoparticles, no bigger than 100 nanometres, which can be coated and used to track blood flow in the smallest blood vessels in the body. By improving our understanding of blood flow in vivo the nanoprobes represent an opportunity to help in the early diagnosis of diseaseLight microscopy is a rapidly evolving field for understanding in vivo systems where high resolution is required. It is particularly crucial for cardiovascular research, where clinical studies are based on ultrasound technologies which inherently have lower resolution and provide limited information.

The ability to monitor blood flow in the sophisticated vascular tree (notably in the smallest elements of the microvasculaturecapillaries) can provide invaluable information to understand disease processes such as thrombosis and vascular inflammation. There are further applications for the improved delivery of therapeutics, such as targeting tumours.

Currently, blood flow in the microvasculature is poorly understood. Nanoscience is uniquely placed to help understand the processes happening in the micron-dimensioned vessels. Designing probes to monitor blood flow is challenging because of the environment; the high protein levels in plasma and the high red blood cell concentrations are detrimental to optical imaging. Conventional techniques rely on staining red blood cells, using organic dyes with short-lived usage due to photobleaching, as the tracking motif. The relatively large size of the red blood cells (7-8 micrometres), which are effectively the probes, limits the resolution in imaging and analysis of flow dynamics of the smallest vessels which are of a similar width. Therefore, to have more detailed resolution and information about the blood flow in the microvasculature, even smaller probes are required.

The key to these iridium-coated nanoparticles lies in both their small size, and in the characteristic luminescent properties. The iridium gives a luminescent signal in the visible spectrum, providing an optical window which can be detected in blood. It is also long-lived compared to organic fluorophores, while the tiny gold particles are shown to be ideal for tracking flow and detect clearly in tissues“, explains Professor Zoe Pikramenou, from the School of Chemistry at  the University of Birmingham.

The findings have been published in the journal Nanomedicine.

Source: https://www.birmingham.ac.uk/

How Nanoparticles Can Repair Damaged Teeth

Researchers at the University of Birmingham have shown how the development of coated silica nanoparticles could be used in restorative treatment of sensitive teeth and preventing the onset of tooth decay.

The study, led by Professor Damien Walmsley, from the School of Dentistry at the University of Birmingham (UK), has been published in the Journal of Dentistry, and shows how sub-micron silica particles can be prepared to deliver important compounds into damaged teeth through tubules in the dentine. The tiny particles can be bound to compounds ranging from calcium tooth building materials to antimicrobials that prevent infection.

smiling-girl

The dentine of our teeth have numerous microscopic holes, which are the entrances to tubules that run through to the nerve. When your outer enamel is breached, the exposure of these tubules is really noticeable. If you drink something cold, you can feel the sensitivity in your teeth because these tubules run directly through to the nerve and the soft tissue of the tooth”, explains Damien Walmsley.

Our plan was to use target those same tubules with a multifunctional agent that can help repair and restore the tooth, while protecting it against further infection that could penetrate the pulp and cause irreversible damage.”

The aim of restorative agents is to increase the mineral content of both the enamel and dentine, with the particles acting like seeds for further growth that would close the tubules.

Source: http://www.birmingham.ac.uk/